شماره مدرك :
8280
شماره راهنما :
7678
پديد آورنده :
فرزام مهر، محدثه السادات
عنوان :

طرح هاي تجزيه پذير بهينه با مينيمم انحراف واريانس زوجي

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
آمار اقتصادي و اجتماعي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده رياضي
سال دفاع :
1392
صفحه شمار :
نه، 119ص
يادداشت :
ص.ع:به فارسي و انگليسي
استاد راهنما :
سعيد پولاد ساز
استاد مشاور :
امير هاشمي
توصيفگر ها :
طرح بلوكي ناقص تجزيه پذير , طرح بلوكي تجزيه پذير آفين , شور- بهينگي , آرايه متعامد , مربع لاتين دو به دو متعامد
تاريخ نمايه سازي :
25/09/1392
استاد داور :
هوشنگ طالبي، غلامرضا اميدي
دانشكده :
رياضي
كد ايرانداك :
ID7678
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتال
چكيده انگليسي :
Optimal resolvable designs with minimum PV aberration Mohadese Sadat Farzam mehr ma farzam@math iut ac ir 14 September 2013 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Saeid Pooladsaz spooladsaz@cc iut ac ir Advisor Dr Amir Hashemi amir hashemi @cc iut ac ir 2010 MSC 62Kxx 62K05 62K10 Keywords Resolvable block design A ne resolvable block design Schur optimality Mutuallyorthogonal Latin square Orthogonal array Pairwise variance aberration Abstract An incomplete block design for treatments in blocks of size k is resolvable if the blockscan be partitioned into sets containing each treatment exactly once The sets are called replicateswhich is denoted by r Thus resolvable block designs are exactly those for which the blocks may bepartitioned into replicates Using s as the number of small blocks per replicate in a resolvable design and b the total number of small blocks then sk and b rs One special class of resolvable design is said to be a ne resolvable when any two block from distinictreplicates of a resolvable design intersect in the number of treatments For an a ne resolvabledesign the number is necessarily k s and so s2 and k s where k is a multiple of s isthe limitation imposed by a neness relative to all resolvable designs The advantage gained is a hostof very nice statistical properties Amongst resolvable incomplete block designs a ne resolvable designs are optimal with respect tothe usual criteria including A D and E optimality Given these excellent statistical properties one might think that every a ne resolvable designs with the same numbers of treatments replicates and blocks size should be equally e cacious Inspection of the variances of the elementary treatmentcontrasts however shows this notion to be false as these variances are di er in how well they estimateelementary treatment contrasts
استاد راهنما :
سعيد پولاد ساز
استاد مشاور :
امير هاشمي
استاد داور :
هوشنگ طالبي، غلامرضا اميدي
لينک به اين مدرک :

بازگشت