پديد آورنده :
صادق پور، عليرضا
عنوان :
رده بندي گراف هاي بدون پنجه
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
صفحه شمار :
هشت،103ص.: مصور
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
بهناز عمومي
استاد مشاور :
رامين جوادي
توصيفگر ها :
گراف هاي منشوروار , گراف هاي شبه يالي , رنگ آميزي , گراف هاي تام , تري گراف ها
تاريخ نمايه سازي :
15/10/92
استاد داور :
غلامرضا اميدي، عباداله محموديان
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
A Characterization of Claw Free Graphs Alireza Sadeghpour a sadeghpour@math iut ac ir 2013 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr B Omoomi bomoomi@cc iut ac ir Advisor Dr R Javadi rjavadi@cc iut ac ir 2013 MSC 05C75 Keywords claw free graphs prismatic graphs quasi line graphs colouring perfect graphs tri graphs Abstract For more than one hundred years the development of graph theory was been inspired and guidedmainly by the Four Color Conjecture The resolution of the conjecture by K Appel and W Haken in1976 as well as the scienti c and creative endeavors made by Erd s Tutte and Berge marked a turningpoint in its history Since then this theory not only has experienced an explosive growth regardingboth pure and applied subjects but also has made a signi cant contribution towards development ofother elds such as the Modern Applied Mathematics Combinatorial Optimization and ComputerScience Moreover in a world where communication is of a prime importance the versatility of graphsmakes them indispensable tools in the design and analysis of communication networks Particularly recognition of the speci c graphs structure is a branch of graph theory by which graph theoristshave been enthralled In this dissertation an attempt is made in order to describe the structure ofclaw free graphs based upon a series of seven extraordinary papers together with their survey all ofwhich written by P Seymour and M Chudnovsky 13 20 A graph is called claw free if no vertex has three pairwise nonadjacent neighbors At rst sight there seem to be a great variety of types of claw free graphs For instance there are line graphs thegraph of the icosahedron complements of triangle free graphs and the Schl i graph an amazinglyhighly symmetric graph with 27 vertices One of the other subclasses of claw free graphs is quasi line graphs a generalization of line graphs which is de ned as those graphs in which the set of neighbors of each vertex can be expressed as the
استاد راهنما :
بهناز عمومي
استاد مشاور :
رامين جوادي
استاد داور :
غلامرضا اميدي، عباداله محموديان