شماره مدرك :
8568
شماره راهنما :
7948
پديد آورنده :
يوسف پور، ميلاد
عنوان :

بررسي پايداري حالت همگام نگاشت هاي لجستيك در شبكه هاي پيچيده

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
ماده چگال
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده فيزيك
سال دفاع :
1392
صفحه شمار :
هشت،56ص.: نمودار
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
كيوان آقابابائي ساماني
استاد مشاور :
فرهاد شهبازي
توصيفگر ها :
همگام سازي , آشوب , پايداري حالت همگام , سيستم هاي ديناميكي , تابع پايداري اصلي , روش سنجه ي ماتريسي
تاريخ نمايه سازي :
7/12/92
استاد داور :
وحيد سالاري، اسماعيل عبدالحسيني
دانشكده :
فيزيك
كد ايرانداك :
ID7948
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Stability analysis of synchronous state of logistic maps in complex networks Milad Yousefpour m yousefpour@ph iut ac ir 09 22 2013 Department of Physics Isfahan University of Technology Isfahan 84156 83111 Iran Degree M Sc Language FarsiSupervisor Dr Keivan Aghababaei Samani samani@cc iut ac irAbstractSynchronization is one of the most important phenomena in science such as sociology biology andphysics Synchronization is a fundamental concept in chaos and dynamical systems Chaotic systemsare those which are sensitive to initial conditions and their future behavior cannot be predicted exactly Dynamical systems classified into two groups continues in time which are described by differentialequations and the other discrete in time which are described by recurrence relations There are two kinds of synchronization global and local Stability of synchronization state is theability of the system to return to its normal state when we introduce perturbation For study of thestability of synchronization state we use two methods 1 master stability function 2 matrix measureapproach Master stability function mostly is used in continues systems and matrix measure approachin discrete systems In master stability function method we need to know the oscillators equation and the chaos pa rameter but in the matrix measure approach we need just to know coupling matrix Master stabilityfunction gives us necessary and sufficient conditions but the matrix measure approach gives us suffi cient conditions One example of discrete systems are Logistic maps We simulate these maps on the Scale Freenetwork the Regular network the Small World network and the Erdos Renyi network and studythe synchronization conditions and stability of synchronous states To this aim we use the masterstability function and the matrix measure approach At the end we compare these systems and discussthe conditions of the systems to be whether synchronized and stabilized or not Keywords Synchronization Chaos Stability of synchronous state Dynamical system Master stabilityfunction Matrix measure approach
استاد راهنما :
كيوان آقابابائي ساماني
استاد مشاور :
فرهاد شهبازي
استاد داور :
وحيد سالاري، اسماعيل عبدالحسيني
لينک به اين مدرک :

بازگشت