پديد آورنده :
مومنين، زهرا
عنوان :
برآورد گشتاوري تعديل يافته
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
آمار كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
صفحه شمار :
يازده،94ص.: جدول،نمودار
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
صفيه محمودي
استاد مشاور :
سعيد پولادساز
توصيفگر ها :
روش گشتاوري , ماكسيمم درستنمايي , كمترين مربعات خطا , روش بيزي , ماكسيمم حاصل ضرب فاصله ها
تاريخ نمايه سازي :
20/1/93
استاد داور :
مجيد اسدي، زهرا صابري
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Adjusted Method of Moment Zahra Momenin z momenin@math iut ac ir 2014 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Sa eh Mahmoodi mahmoodi@cc iut ac ir Advisor Dr Saeid Pooladsaz spooladsaz@cc iut ac ir 2010 MSC 51A99 Keywords method of moment maximum likelihood least square Bayesian adjusted method ofmoment maximum product spacing AbstractEstimationes of unknown parameters has been considered one of the most fundamental statisticalproblems and nding the best estimator has always been the main concern of statisticians Someof estimating methods are the method of moment maximum likelihood least square and Bayesianmethods The adjusted method of moment AMM is a new method to estimate unknown parametersin parametric statistical inference introduced by Soltani and Homei 2009 To explain this methodlet X1 Xn be a random sample from a population with an arbitrary distribution function F determined by certain unknown parameters It is de ned for every k 1 2 n X j F X j F X j 1 k k XF n k 1 2 j 1to be the k th random Stieltjes partial sum RSPS where F X 0 0 and X 1 X n are the korder statistics of X1 Xn If F is replaced by its emperical distribution function then XF n will nbecome the k th sample moment X k 1 n i 1 xk k 1 2 Note that F X j F X j 1 i1 Naturally we expect XF n give more accurate value for k E X k than X k The idea of kn AMM is the same as the MM but the k th sample moments are replaced by the corresponding k th korder RSPS using XF n instead of X k in the AMM Thus if the distribution F has say L unknownparameters then the parameters can be estimated in the AMM by solving the system of L equations k k XF n k 1 L if there are closed forms for k otherwise the AMM estimators are the
استاد راهنما :
صفيه محمودي
استاد مشاور :
سعيد پولادساز
استاد داور :
مجيد اسدي، زهرا صابري