پديد آورنده :
سادات طلائي، زهرا
عنوان :
بررسي انحناي ترموديناميك مدل آيزينگ دو بعدي، معرفي نظريه اتلاف موضعي در سيستم هاي دور از تعادل و محاسبه نماهاي بحراني گاز ناآبلي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده فيزيك
صفحه شمار :
[نه]،105ص.: مصور،جدول،نمودار
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
بهروز ميرزا
استاد مشاور :
فرهاد فضيله
توصيفگر ها :
رفتار مقياس بندي , نظريه افت و خيزي , آمار طرد كسري ناآبلي , چگالش
تاريخ نمايه سازي :
11/4/93
استاد داور :
فريناز روشني، غلامرضا جعفري، فرهاد شهبازي
كد ايرانداك :
ID636 دكتري
چكيده انگليسي :
Zahra Talaei zs talaie@ph iut ac ir Department of Physics Isfahan University of Technology Isfahan 84156 83111 IranDegree Ph D Supervisors Prof Behrouz Mirza AbstractThis thesis includes three parts Thermodynamics curvature of 2d Ising model on Kagomelattice considered in rst part According to the standard scaling hypothesis thermody namics curvature at critical point behaves as T Tc 2 where is heat capacity criticalexponent and Tc denotes the critical temperature While it is true for systems with positivevalue of and some systems with zero value of it is not veri ed for negative value of and it bahaves as T Tc 1 for these systems Here we derive thermodynamics curvatureof a system with zero value of and nd that it behaves like negative According to theresults exist for di erent systems it seems that the behaviour of thermodynamics curvaturedepends on dimension as well as the sign of Second part introduces a local dissipation theorem A standard method for measuring trans port properties in simulation is the transient time correlation function that represents aspecial case of a more general theorem the dissipation theorem It is indirectly calculatesphase function averages and these averages often have signi cantly less statistical error thandirect averages A local version of uctuation theorem has been recently demonstrated Herewe show that a similar local expression can be obtained for dissipation theorem providing away of determining values of phase functions by monitoring the uctuations of phase func tions in a small region of the system An ideal gas obeying non abelian statistics at condensation point is investigated in the lastpart Its thermodynamics quantities are derived It is found that thermodynamics quantitiesare nite at condensation point while their derivatives diverge at this point and behave as T Tc near the condensation point where is a critical exponent Critical exponentsrelated to the heat capacity and the compressibility are obtained by tting numericalresults and other critical exponents are also obtained by using the scaling law hypothesis for athree dimensional non abelian gas This set of critical exponents introduces a new universalityclass It is also found for this situation with negative value of thermodynamics curvaturebehaves like T Tc 1 in three dimensions and behaves like T Tc 2 in four dimensions The result of rst part and current part reveal that the scaling behaviour of thermodynamicscurvature depends on dimensions as well as the sign of critical exponent Keywords Thermodynamics curvature kagome lattice scaling behaviour Fluctuation theroem Dissipa tion theorem Local dissipation theorem non abelian statistics critical exponent condensa tion
استاد راهنما :
بهروز ميرزا
استاد مشاور :
فرهاد فضيله
استاد داور :
فريناز روشني، غلامرضا جعفري، فرهاد شهبازي