شماره مدرك :
9134
شماره راهنما :
8463
پديد آورنده :
نوري، بهاره
عنوان :

يك روش عددي براي حل معادلات انتگرال فردهلم و ولتراي دو بعدي نوع دوم

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
سال دفاع :
1392
صفحه شمار :
هفت،68ص.: جدول،نمودار
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
مهدي تاتاري
استاد مشاور :
حميدرضا مرزبان
توصيفگر ها :
چند جمله اي چبيشف , چند جمله اي لژاندر
تاريخ نمايه سازي :
8/6/93
استاد داور :
رضا مختاري، محمدتقي جهانديده
دانشكده :
رياضي
كد ايرانداك :
ID8463
چكيده انگليسي :
A numerical solution of two dimensional Fredholm and Volterra integral equations of the second kind Bahareh Nouri b nouri@math iut ac ir 2014 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Mehdi Tatari mtatari@cc iut ac ir Advisor Dr Hamid Reza Marzban hmarzban@cc iut ac ir 2010 MSC 05C15 53C42 Keywords Fredholm Integral Volterra Integral Chebyshev polynomial Legendre polynomial Abstract Integral equations are one of the most useful mathematical tools in the both pure and applied anal ysis An integral equation is an equation in which the unknown function appears under an integral Eric Ivar Fredholm was a swedish mathematician whose work on integral equations and operator the ory foreshadowed the theory of Hilbert space Fredholm introduced and analyzed a class of integralequations now called Fredholm Equations His analysis include the construction of Fredholm deter minates and the proof of Fredholm theorems Vito Volterra was a physicist and a mathematician whose stature in the mathematical world was com pared to that of David Hilbert His work on integral and integro di erential equations and functionsof functions led to the development of functional analysis The type with integration over a xed interval is called a Fredholm equation while if the upper limitis x a variable it is a Volterra equation The other fundamental division of these equations is into rst and second kinds If unknown function just appears under an integral we have rst kind ofintegral equations otherwise the integral equation is second kind Many problems in engineering andmechanics can be transformed into integral equations For example it is usually required to solveFredholm integral equations in the calculation of plasma physics Integral equations occur in a variety of applications often being obtained from a di erential equation Many physics problems that are usually solved by di erential equations methods can be solved more
استاد راهنما :
مهدي تاتاري
استاد مشاور :
حميدرضا مرزبان
استاد داور :
رضا مختاري، محمدتقي جهانديده
لينک به اين مدرک :

بازگشت