شماره مدرك :
9458
شماره راهنما :
8740
پديد آورنده :
جمالي، مريم
عنوان :

انتگرال ديورژانس كند و جواب هاي كانارد متوازن

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
علوم رياضي - رياضي كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
سال دفاع :
1393
صفحه شمار :
نه،67ص.: مصور،جدول،نمودار
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
رسول عاشقي
استاد مشاور :
حميدرضا ظهوري زنگنه
توصيفگر ها :
سيستم كند-تند , انشعاب , سيكل كانارد
تاريخ نمايه سازي :
21/10/93
استاد داور :
مجيد گازر، اعظم اعتماد
دانشكده :
رياضي
كد ايرانداك :
ID8740
چكيده انگليسي :
Slow Divergence Integral and Balanced Canard Solutions Maryam Jamali maryam jamali@math iut ac ir 2014 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Rasoul Asheghi r asheghi@cc iut ac ir Advisor Dr Hamid Reza Zohouri Zangeneh hamidz@cc iut ac ir 2010 MSC 35P99 Keywords Slow fast system Bifurcation Canard cycle Slow divergence integral AbstractIn this thesis we deal with smooth two dimensional singular perturbation problems Attention goesto the entry exit relation for a generic Hopf or jump breaking mechanism We introduce the notions of balanced canard solution slow relation and fast relation function Weshow the role of these functions in the creation of relaxation oscillations and related bifurcationspatterns not only in the presence of a generic breaking parameter but also in the absence of suchparameter We also study canard cycles depending on two phase variables and that are broken by two breakingmechanisms We could also call them two layer canard cycles The canard cycles under considerationcontain both a turning point and a fast orbit connecting two jump points At both the turning pointand the connecting fast orbit we suppose the presence of a parameter permitting generic breaking Such canard cycles depend on two parameters that we call phase parameters We study the relaxation oscillations near the canard cycles by means of a map from the plane of phaseparameters to the plane of breaking parameters This paper is organized as follows In Sect 2 we recall the de nitions and basic theorems and the precisede nition of Hopf breaking mechanism and jump breaking mechanism together with the essentialproperties of the transition maps the local structure theorems near these breaking mechanisms InSect 3 we study the behaviour near an arbitrary balanced canard solution as occurs in tunnelbehaviour We also introduced the slow relation function and fast relation function and their link
استاد راهنما :
رسول عاشقي
استاد مشاور :
حميدرضا ظهوري زنگنه
استاد داور :
مجيد گازر، اعظم اعتماد
لينک به اين مدرک :

بازگشت