پديد آورنده :
عبدالي، مرتضي
عنوان :
شبيه سازي عددي انتقال حرارت تشعشي به روش ناحيه اي داخل كوره ها
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
مكانيك - تبديل انرژي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده مكانيك
صفحه شمار :
هفده،75ص.: مصور،جدول،نمودار
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
محسن دوازده امامي
استاد مشاور :
احمد صابونچي
تاريخ نمايه سازي :
5/11/93
استاد داور :
علي اكبرعالم رجبي، احمد سوهانكار
چكيده فارسي :
1 چكيده انتقال حرارت تشعشعي مهمترين عامل انتقال حرارت در دماهاي باال از جمله كورهها ميباشد روشهاي متفاوتي براي تحليل انتقال حرارت تشعشعي ارائه شده است در اين پايان نامه در ابتدا به بررسي روشهاي مختلف تشعشعي موجود در نرم افزار فلوئنت از جمله روش تشعشعي انتقال گسسته روش تشعشعي دسته بندي گسسته روش تشعشعي پي 1 و روش تشعشعي روزلند به صورت مختصر پرداخته شده و سپس يك كوره مستطيل شكل و يك كوره مربع شكل به صورت دوبعدي و يك كوره مكعب مستطيل و يك كوره مكعب مربع به صورت سه بعدي با روشهاي تشعشعي فوق مورد بررسي قرار ميگيرد نتايج حاصل از اين روشها بيانگر برتري دقت روش دسته بندي گسسته نسبت به ساير روشها ميباشد همچنين زمانهاي حل براي هر كدام از روشها محاسبه ميشود مقايسه زمانهاي تحليل اين روشها قرارگيري همه زمانها در يك بازه تقريبا برابري را نشان ميدهد در ادامه به بحث و بررسي در مورد روش ناحيهاي پرداخته ميشود در تحليل روش ناحيهاي چهار دسته معادالت ماتريسي وجود دارد اين چهار دسته عبارتند از معادالت انتگرالي نواحي تبادل مستقيم معادالت نواحي تبادل كل معادالت شار تبادل مستقيم و معادالت تعادل انرژي كه هر كدام از اين دستهها شامل چندين ماتريس ميباشد كه ابعاد هر ماتريس تابعي از تعداد نواحي سطحي و حجمي ميباشد در فعاليت حاضر از دو روش براي تحليل معادالت انتگرالي در محاسبه معادالت نواحي تبادل مستقيم استفاده شده است در روش اول براي تحليل انتگرالهاي چندگانه تعداد شبكه مورد حل را باال برده و انتگرال هاي چندگانه موجود در معادالت با يك نقطه در مركز تخمين زده ميشود و داده هاي بدست آمده با تكنيك هايي از جمله هموار نمودن دادهها اصالح و بهينه ميگردند و سپس ادامه مساله مورد تحليل قرار ميگيرد نمونههاي بررسي شده با روشهاي تشعشعي قبل در مدل هاي دو و سه بعدي براي روش تشعشعي ناحيهاي نيز مورد بررسي قرار ميگيرد نتايج حاصل از روش ناحيهاي با نتايج روشهاي قبل و مراجع مقايسه شدهاند كه صحت روش ناحيهاي بكار گرفته شده مورد تاييد قرار ميگيرد نكته قابل تامل در تحليل روش ناحيهاي افزايش زمان تحليل ميباشد لذا براي كاهش زمان از شبكه بندي درشتتري استفاده شده است در اين حالت نميتوان مانند روش ناحيهاي قبل از مدل تك نقطهاي براي انتگرال گيري نواحي تبادل مستقيم استفاده كرد لذا از روش انتگرال گيري چهار نقطهاي گاوس براي باال بردن دقت انتگرالها استفاده شده است نتايج دمايي بدست آمده از روش ناحيهاي با استفاده از روش انتگرال گيري گاوس در شبكه درشت با روش ناحيهاي تك نقطهاي در شبكه بندي ريز براي مدلهاي دو و سه بعدي بيانگر تطابق بسيار خوب اين روش ميباشد زمان اندازه گيري اين روش كاهش چشمگيري را نشان ميدهد و در واقع زمان حل حدود هفتاد و پنج درصد كاهش را براي تمام مدلهاي دوبعدي و سهبعدي را نشان ميدهد
چكيده انگليسي :
Numerical Simulation of Radiation Heat Transfer by Zone Method in the Furnaces Morteza Abdali m abdali@me iut ac ir Date of Submission 2014 09 10 Department of Mechanical Engineering Isfahan University of Technology Isfahan 84156 83111 Iran Degree M Sc Language Farsi Supervisor Mohsen Davazdah Emami mohsen@cc iut ac ir Abstract Radiation heat transfer is dominant heat transfer mechanism in the furnaces where the temperature is usually high Thermal radiation is a very complex phenomenon and although the governing equations are known but they are difficult to solve The analysis of radiative heat transfer in presence of participating medium is very difficult because radiative intensity as function of position direction wavelength temperature and time In this study at first the problem has been solved using the FLUENT software to analyze the radiative heat transfer problems The available computational fluid dynamics software package FLUENT is applied to various two dimensional and three dimensional test problems using Discrete Ordinate Model DOM Discrete Transfer Model DTRM Rosseland Model and P 1 Model then the results obtained have been compared with other published results In the continue Zone Radiation Method is applied There are four sets of matrix equations in Zone Radiation Method These equations are Direct Exchange Areas DEA Total Exchange Areas TEA Direct Flux Areas DFA and Energy balance DEA equations are included multiple integral equations that must be calculated for each pair of zones In this study two methods are applied to calculation of DEA integral equations At the first method solve domain is divided to several face and volume zones In this method number of domain grid is increased refine mesh then DEA integral equations is estimated by one point in the center of each element and One point Model is used Finally the results is smoothed by some techniques After DEA equations TEA DFA and Energy equations are calculated respectively Decreasing of calculations is the advantage of this method Two 3 d and two 2 d cases that are tested with FLUENT software again are used with Zone Method that added by UDF code in the FLUENT software and compiled Results that obtained by Zone method has reasonable accuracy Computation time is an important point in the Zone radiation method because it s too large So In this study another way is used to solve this problem In second method Gaussian Quadrature is used to calculation on DEA integral equations in the grid that coarser than the previous method Gaussian Quadrature is estimated DEA integral on each line element in 2 d problem by two points on each surface by four points and on each volume element by eight points In fact in second way accuracy of integral is increased but the number of meshes is reduced So the computational time is reduced The effect of static temperature in the medium DEA solve time and total solve time has been studied for second DEA calculation method for last four test cases again and the results are compared with one point Zone method These four test cases show radiative zone method can be used in coarse mesh with high accuracy and computational economy The results show DEA and total computational times reduce less than 75 when number of meshes are reduced If coarse mesh is used for Zone radiation method can t use one point method to calculation DEA integral equations because this method causes errors in DEA calculations and follow it total calculation So results can t be reasonable and must be used better way to calculate integrals such as Gaussian Quadrature Keywords Radiation Heat Transfer Zone Method FLUENT User Defined Functions UDF and Gaussian Quadrature
استاد راهنما :
محسن دوازده امامي
استاد مشاور :
احمد صابونچي
استاد داور :
علي اكبرعالم رجبي، احمد سوهانكار