شماره مدرك :
9971
شماره راهنما :
9200
پديد آورنده :
ابوالحسن بيگي، فهيمه
عنوان :

بررسي نامساوي چن براي زير خمينه هايي از چند فرم فضا

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي محض ﴿هندسه﴾
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
سال دفاع :
1393
صفحه شمار :
هفت، 64ص.: مصور
يادداشت :
ص.ع. به فارسي و انگليسي
استاد راهنما :
اعظم اعتماد
استاد مشاور :
امير هاشمي
توصيفگر ها :
اولين پاياي چن , فرم فضاي شبه ثابت , فرم فضاي كوسيمپلكتيك و فرم فضاي حقيقي
تاريخ نمايه سازي :
94/2/16
استاد داور :
محمدرضا كوشش، مهدي نعمتي
تاريخ ورود اطلاعات :
1396/09/26
كتابنامه :
كتابنامه
رشته تحصيلي :
علوم رياضي
دانشكده :
رياضي
كد ايرانداك :
ID9200
چكيده انگليسي :
A survey on Chen inequality for submanifold of some space forms Fahimeh Aboualhasan Beigi fahimeh beygi@gmail com 2014 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Azam Etemad ae110mat@cc iut ac ir Advisor Dr Amir Hashemi Amir Hashemi@cc iut ac ir 2010 MSC 53B15 53B05 53C40 Keywords rst Chen inequality quasi constant space form cosymplectic space form and real space form Abstract One of the problem considered in Riemannian geometry is checking inequalities for submanifolds in various space forms endowed with a semi symmetric metric connection If the torsion tensor Tof linear connection on Riemannian manifold M g satis es T X Y Y X X Y for any vector elds X Y and 1 form then the connection is called a semi symmetric connection If g 0 then is called a semi symmetric metric connection on M Most of these inequalities are toexplained relations between the extrinsic geometry and intrinsic geometry of a submanifold Amongall the submanifold properties mean sectional scalar and Ricci curvatures are usually present in theinequalities The most famous inequalities of the submanifold are Chen inequality In fact the rstChen inequality representer a inequality between scalar curvature and mean curvature The specialform of this inequality is determined by properties of space forms For example a Riemannian manifold M g of quasi constant curvature is a Riemannian manifold with the curvature tensor satisfying in thespecial condition on the curvature tensor Now if and K be scalar curvature and sectional curvatureof M respectively and moreover the rst Chen invariant is de ned by M n p p inf K Tp M n p M n dim 2 then Chen inequality for submanifold of Riemannian manifold of quasi 2constant curvature will be state by M n p n 2 2 n 1 H 2 n 1 a b n 1 P 2 P 2 n 2where P is tangent component of P and P pr P If the vector eld P is tangent or normal to M nthen inequality will change We can observe in this inequality that there is a relation between squared
استاد راهنما :
اعظم اعتماد
استاد مشاور :
امير هاشمي
استاد داور :
محمدرضا كوشش، مهدي نعمتي
لينک به اين مدرک :

بازگشت