شماره مدرك :
9975
شماره راهنما :
9205
پديد آورنده :
جزنابادي، مهدي
عنوان :

رنگ آميزي جمعي گراف ها

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
سال دفاع :
1393
صفحه شمار :
نه، 61ص.: مصور
يادداشت :
ص.ع. به فارسي و انگليسي
استاد راهنما :
رامين جوادي
استاد مشاور :
بهناز عمومي
واژه نامه :
دارد
توصيفگر ها :
رنگ آميزي تمايزگر همسايه اي , برد جمعي
تاريخ نمايه سازي :
94/2/16
استاد داور :
غلامرضا اميري، محمدرضا عبودي
تاريخ ورود اطلاعات :
1396/09/27
كتابنامه :
كتابنامه
رشته تحصيلي :
علوم رياضي
دانشكده :
رياضي
كد ايرانداك :
ID9205
چكيده انگليسي :
The Sigma Coloring of Graphs Mahdi Jeznabadi m jeznabadi@math iut ac ir 2014 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Ramin Javadi rjavadi@cc iut ac ir Advisor Dr Behnaz Omoomi bomoomi@cc iut ac ir 2010 MSC 05C15 Keywords Neighbor distinguishing coloring Sigma coloring The sigma range AbstractIn this thesis we investigate sigma coloring of graphs and its corresponding parameters For a nontrivial connected graph G let c V G N be a vertex coloring of G where adjacentvertices may be colored the same For a vertex v of G let N v denote the set of vertices adjacent tov The color sum v of v is the sum of the colors of the vertices in N v If u v for everytwo adjacent vertices u and v of G then c is called a sigma coloring of G The minimum number ofcolors required in a sigma coloring of a graph G is called its sigma chromatic number G The sigma chromatic number of a graph G never exceeds its chromatic number G and for everypair a b of positive integers with a b there exists a connected graph G with G a and G b There is a connected graph G of order n with G k for every pair k n of positive integers withk n if and only if k n 1 n 1 For integers n 2 let f n 1 which then is the number of distinct n element multisubsetsof N 1 2 Now for positive integers k and n the sigma chromatic number of the regular complete k partite graph Kk n is the unique positive integer for which f 1 n k f n Let G Kk1 n1 k2 n2 kt nt where n1 n2 nt are t distinct positive integers Then G max Kki ni 1 i t A sigma k coloring of a graph G is an assignment of positive integers 1 2 k to the vertices of Gsuch that for every two adjacent vertices the sums of numbers assigned to their neighbors are di erent The minimum number k for which there exists a sigma k coloring of G is called the sigma range ofG and is denoted by G It is proved that G 468 for every planar graph G This improves
استاد راهنما :
رامين جوادي
استاد مشاور :
بهناز عمومي
استاد داور :
غلامرضا اميري، محمدرضا عبودي
لينک به اين مدرک :

بازگشت