پديد آورنده :
سلاجقه، محمد
عنوان :
ويژگي نقطه ثابت نيم گروه هاي ميانگين پذير فرين
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي محض ﴿آناليز﴾
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
يادداشت :
ص.ع. به فارسي و انگليسي
استاد راهنما :
رسول نصر اصفهاني
استاد مشاور :
سيما سلطاني رناني
توصيفگر ها :
ميانگين پذيري , ايده آل , پاياي ضربي
تاريخ نمايه سازي :
23/3/94
استاد داور :
مهدي نعمتي، محمدرضا كوشش
تاريخ ورود اطلاعات :
1396/10/02
چكيده انگليسي :
Abstract In this thesis we study the xed point set of the non expansive mapping T for a Banach space with uniformly Gateaux di erentiable norm when is a multiplicative left invariant mean on S Let S be the Banach space of all bounded real valued functions on S with the supremum norm For s S and f S we de ne elements ls f S by ls f t f st for each t S Let D be a subspace of S containing 1 An element in D is said to be a mean on D in 1 1 As is well known is a mean on D if and only if inf f s f sup f s s S s S for each f D We often write t f t in stead of f for D Let D be ls invariant i e ls D D for each s S A mean on D is said to be left right invariant if ls f f rs f f for each s S and f D We say that D is left right amenable if D has a left right invariant mean In particular D is called extermely left right amenable if it has a multiplicative left right invariant mean that is a left right invariant mean satisfying f g f g for all f g D Furthermore D is called extremely amenable if it has a multiplicative mean with is both left invariant and right invariant for s S we can de ne the point evaluation s by s f f s for every 1
استاد راهنما :
رسول نصر اصفهاني
استاد مشاور :
سيما سلطاني رناني
استاد داور :
مهدي نعمتي، محمدرضا كوشش