پديد آورنده :
حسيني، احسان
عنوان :
پاسخ سيستم هاي تاخيري چندگانه ي خطي با استفاده از توابع تركيبي بلاك - پالس و چند جمله اي هاي برنولي
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي كاربردي
محل تحصيل :
اصفهان:دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
استاد راهنما :
حميدرضا مرزبان
واژه نامه :
به فارسي و انگليسي
توصيفگر ها :
ماتريس عملياتي انتگرال
تاريخ نمايه سازي :
1394/11/10
استاد داور :
محمود منجگاني، فريد بهرامي
چكيده انگليسي :
Solution of linear multi delay systems using hybrid of block pulse functions and Bernoulli polynomials Seyed Ehsan Hosseini ehsan hosseini@math iut ac ir 2016 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Hamid Reza Marzban hmarzban@cc iut ac ir 2010 MSC 49M25 34K06 65L03 Keywords multi delay systems Bernoulli polynomials block pulse functions hybrid functions AbstractWe present a method for finding the solution of linear multi delay systems MDS by using the hybridof block pulse functions and Bernoulli polynomials In this approach operational matrices of integra tion delay and product are utilized to reduce the solution of multi delay systems to the solution ofa linear system of algebraic equations whose solution is much more easier than the original one Theavailable sets of orthogonal functions can be divided into three classes The first class includes theset of piecewise constant basis functions PCBFs e g block pulse functions Walsh functions Haarfunctions etc The second consists of a set of orthogonal polynomials e g Chebyshev Laguerre Legendre etc The third is the widely used set of sine cosine functions in Fourier series Whileorthogonal polynomials and sine cosine functions together form a class of continuous basis functions piecewise constant basis functions have inherent discontinuities or jumps It is worth mentioning thatapproximating a continuous function with piecewise constant basis functions results in an approxima tion that is piecewise constant On the other hand if a discontinuous function is approximated withcontinuous basis functions the resulting approximation is continuous and cannot properly model thediscontinuity points For approximating an arbitrary function the advantages of Bernoulli polynomi als m t over the shifted Legendre polynomials Pm t where 0 t 1 and m 0 1 2 are a The operational matrix P in Bernoulli polynomials has less errors than P for shifted Legendre m 1 t polynomials for 1 m 10 This is because for P in m t we ignore the term while for P m 1
استاد راهنما :
حميدرضا مرزبان
استاد داور :
محمود منجگاني، فريد بهرامي