شماره مدرك :
11120
شماره راهنما :
10236
پديد آورنده :
جاسم زاده رنجبر، شيما
عنوان :

حل معادلات ديفرانسيل - انتگرال غير خطي ولترا - فردهلم با استفاده از تركيب توابع بلاك - پالس و چند جمله اي هاي درونياب لاگرانژ

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي كاربردي
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان، دانشكده رياضي
سال دفاع :
1394
صفحه شمار :
نه، 110ص.:نمودار
استاد راهنما :
حميدرضا مرزبان
واژه نامه :
به فارسي و انگليسي
توصيفگر ها :
ماتريس عملياتي مشتق , نقاط گاوسي
استاد داور :
رضا مختاري، محمود منجگاني
تاريخ ورود اطلاعات :
1395/01/14
دانشكده :
رياضي
كد ايرانداك :
ID10236
چكيده انگليسي :
Solution of Nonlinear Volterra Fredholm Integro di erential Equations via Hybrid of Block Pulse Functions and Lagrange Interpolating Polynomials Shima Jasemzadehranjbar S jasemzadeh@math iut ac ir 2015 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Hamid Reza Marzban hmarzban@cc iut ac ir 2013 MSC 34K28 45J05 92D25 Keywords Lagrange interpolating polynomials nonlinear Volterra Fradholm integro di erentialequation block pulse functions operational matrix of derivative Gaussian nodes AbstractIntegral and integro di erential equations have many applications in various elds of science andengineering such as biological models industrial mathematics control theory of nancial mathematics economics uid dynamics heat and mass transfer queuing theory electrostatics electromagnetic electrodynamics elasticity biomechanics oscillation theory and so forth It is well known thatit is extremely di cult to analytically solve nonlinear integro di erential equations Indeed fewof these equations can be solved explicitly So it is required to devise an e cient approximationscheme for solving these equations So far several numerical methods are developed The solution ofthe rst order integro di erential equations has been obtained by the numerical integration methodssuch as Euler Chebyshev and Runge Kutta methods Moreover a di erential transform method forsolving integro di erential equations was introduced by Darania and Ebadian Shidfar et al appliedthe homotopy analysis method for solving the nonlinear Volterra and Fredholm integro di erentialequations As a concrete example we can express the mathematical model of cell to cell spread ofHIV 1 in tissue cultures considered by Mittler et al Babolian suggested an e ective direct methodto determine the numerical solution of the speci c nonlinear Volterra Fredholm integro di erentialequations Their approach was based on triangular functions In recent years the meshless methodshave gained more attention not only by mathematicians but also in the engineering community An
استاد راهنما :
حميدرضا مرزبان
استاد داور :
رضا مختاري، محمود منجگاني
لينک به اين مدرک :

بازگشت