شماره مدرك :
11259
شماره راهنما :
10350
پديد آورنده :
موسوي، راحله
عنوان :

مدل هاي آميخته ي چندكي خطي

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
امار رياضي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
سال دفاع :
1394
صفحه شمار :
دوازده، 87ص.: جدول
استاد راهنما :
سروش عليمرادي
استاد مشاور :
ريحانه ريخته گران
توصيفگر ها :
رگرسيون چندكي , مدل اثرات آميخته , مربع بندي گاوس , مشتق كلارك , بهترين پيشگوي خطي
استاد داور :
ايرج كاظمي، مريم كلكين نما
تاريخ ورود اطلاعات :
1395/03/03
دانشكده :
رياضي
كد ايرانداك :
ID10350
چكيده انگليسي :
Linear quantile mixed models Raheleh Mousavi r mousavi@math iut ac ir 2016 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Soruosh Alimoradi salimora@cc iut ac ir Advisor Dr Reyhaneh Rikhtehgaran r rikhtehgaran@cc iut ac ir 2010 MSC 62J05 Keywords linear quantile mixed models quantile regression mixed effects models Gaussian quadrature Clarke s derivative Best linear predictor Abstract Quantile regression QR was introduced as an extension of the classical least squaresestimation of conditional mean models to conditional quantile functions Quantile regressionis a statistical analysis able to detect more effects than conventional procedures It does notrestrict attention to the conditional mean and therefore it permits to approximate the wholeconditional distribution of a response variable Conditional quantile regression pertains tothe estimation of unknown quantiles of an outcome as a function of a set of covariates and avector of fixed regression coefficients On the other hand dependent data arise in many studies Frequently adopted samplingdesigns such as cluster and repeated measures may induce this dependence which theanalysis of the data needs to take into due account This sampling designs typically requirethe application of statistical methods that allow for the correlation between observations thatbelong to the same unit or cluster Mixed effects models also known random effects models represent highly popular and flexible models to analyze complex data A longitudinal survey
استاد راهنما :
سروش عليمرادي
استاد مشاور :
ريحانه ريخته گران
استاد داور :
ايرج كاظمي، مريم كلكين نما
لينک به اين مدرک :

بازگشت