شماره راهنما :
1448 دكتري
پديد آورنده :
فرهادي، محمد
عنوان :
قضاياي نمايشي براي برخي زير جبرهاي باناخ CB(X)
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان
صفحه شمار :
هفت، 82، [5]ص.
استاد راهنما :
محمدرضا كوشش
استاد مشاور :
فريد بهرامي
توصيفگر ها :
قضيه استون-وايراشتراس , قضيه گلفاند-نايمارك , جبرهاي باناخ , فشرده سازي استون-چك , طيف , فشرده سازي
استاد داور :
محمود منجگاني- مجيد فخار- عليرضا اميني هرندي
تاريخ ورود اطلاعات :
1398/06/31
تاريخ ويرايش اطلاعات :
1398/07/02
چكيده انگليسي :
Representation theorems for some Banach subalgebras of CB X Mohammad Farhadi m farhadi@math iut ac ir 2019 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 IranSupervisor Dr Mohammad Reza Koushesh koushesh@cc iut ac irAdvisor Dr Farid Bahrami fbahrami@cc iut ac ir2010 MSC 54D35 54D65 46J10 46J25 46E15 Keywords Stone Cech compacti cation Gelfand Naimark theorem Spectrum Con nectedness and Compactness AbstractAt rst we list the following two papers appeared as results of my thesis work 1 Farhadi M and Koushesh M R A Gelfand Naimark type theorem Topology Appl 228 145 157 2017 2 Farhadi M and Koushesh M R On closed subalgebras of CB X Houston J Math accepted Throughout this thesis by a space we mean a topological space and the eld of scalarsis assumed to be the complex eld C Let X be a space we denote by CB X the set of all bounded continuous scalar valuedfunctions on X The set CB X is a Banach algebra with pointwise addition and mul tiplication and supremum norm For any f in CB X the zero set of f is de ned by f 1 0 and is denote by z f thecozero set of f is de ned by X z f and is denote by coz f and the support of f isde ned by clX coz f and is denote by supp f We denote by C0 X the Banach subalgebra of all f in CB X which vanish at in nity that is f 1 is compact for any positive Also we denote by C00 X the set of all f in CB X whose support is compact In this thesis we study a commutative Gelfand Naimark type theorem for cer tain Banach subalgebras of CB X In fact the Gelfand Naimark theorem states 1
استاد راهنما :
محمدرضا كوشش
استاد مشاور :
فريد بهرامي
استاد داور :
محمود منجگاني- مجيد فخار- عليرضا اميني هرندي