شماره مدرك :
16292
شماره راهنما :
14540
پديد آورنده :
شريفي، كيميا
عنوان :

تخصيص منابع و تخليه محاسبات در رايانش مبتني بر مه بر مبناي كاهش تاخير پاسخگويي و مقدار مصرف انرژي

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
شبكه هاي مخابراتي
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان
سال دفاع :
1399
صفحه شمار :
دوازده، 95ص.: مصور، جدول، نمودار
استاد راهنما :
فرامرز هندسي
استاد مشاور :
زينب زالي
توصيفگر ها :
شبكه هاي مبتني بر نرم افزار , رايانش مبتني بر مه , بارگذاري وظيفه , بهينه سازي
استاد داور :
حسين سعيدي، مسعودرضا هاشمي
تاريخ ورود اطلاعات :
1399/11/20
كتابنامه :
كتابنامه
رشته تحصيلي :
برق مخابرات
دانشكده :
مهندسي برق و كامپيوتر
تاريخ ويرايش اطلاعات :
1399/11/21
كد ايرانداك :
2672307
چكيده انگليسي :
Resource Allocation and Computation Offloading in Fog Computing Based on Reducing Response Delay and Energy Consumption Kimia Sharifi k sharifi@ec iut ac ir August 2020 Department of Electrical and Computer Engineering Isfahan University of Technology Isfahan 84156 83111 Iran Degree M Sc Language Farsi Supervisor Assoc Prof Faramarz Hendessi hendessi@iut ac ir Advisor Assist Prof Zeinab Zali zali@iut ac ir Abstract Nowadays the Internet is overgrowing and accessing the Internet is more comfortable than before Ease of access andmore coverage of the Internet result in more devices to be online Besides the massive number of connected devices newapplications have emerged in areas like smart city smart transportation and emergency response As a result the velocityof generating data is also increasing as same as the volume of generated data This enormous amount of data require acomprehensive infrastructure for processing and storing them Also in the Big Data era many useful decisions can bemade using this tremendous data On the other hand end devices cannot provide enough resources for processing and makereal time decisions To this end Cloud Computing is introduced as a solution for providing the processing and storagecapabilities to this demand Although cloud servers provide high performance resources communication costs are one thedrawbacks for sending tasks to the cloud Alternately rather than moving data to the cloud it may be useful to locate theresources closer to end devices Fog computing as a novel computing paradigm is introduced that aims this issue In Fogcomputing there is an extra layer located between the cloud and end devices The fog nodes provide sufficient resourcesfor the end devices Although fog nodes have better performance than the end devices the capability of fog nodes is stilllimited due to deployment costs So they cannot serve all of the received tasks It will be necessary that there must be anoptimized mechanism for offloading tasks In this thesis we propose a task offloading scheme in software defined networkequipped with fog nodes and we are looking to provide a solution based on optimization problems to be the best choice fortask offloading by the controller according to the system conditions The proposed scheme consists of two phases fognode selection and task offloading In the first phase we formulate an integer linear program ILP and solve the problemto get optimal number of fog nodes required for a given network In the task offloading phase we formulate an optimizationproblem to minimize overall delay in task computation while considering associated constraints By solving this problem controller takes offloading decisions based on delay associated to offloading energy consumption link capacity betweennetwork devices rule capacity of These devices Therefore how to assign tasks to network devices and where to performcomputations is specified Keywords Software defined networks Fog computing Task offloading Optimization
استاد راهنما :
فرامرز هندسي
استاد مشاور :
زينب زالي
استاد داور :
حسين سعيدي، مسعودرضا هاشمي
لينک به اين مدرک :

بازگشت