شماره مدرك :
16601
شماره راهنما :
1787 دكتري
پديد آورنده :
كمالي،‌ رضوان
عنوان :

بهينه سازي چند دوره اي سبد سرمايه با استفاده از اندازه ريسك احتمالاتي، توزيع هاي مختلف، درون يابي تكه اي خطي توزيع تجربي و مدل هاي ARIMA-GARCH

مقطع تحصيلي :
دكتري
گرايش تحصيلي :
رياضي مالي
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان
سال دفاع :
1400
صفحه شمار :
[هشت]، 116 ص: مصور، جدول، نمودار
استاد راهنما :
محمد تقي جهانديده، صفيه محمودي
استاد مشاور :
رضا مختاري
واژه نامه :
واژه نامه
توصيفگر ها :
معيار ريسك احتمالاتي , برآورد‌گر توزيع هسته , توزيع تجربي , درون‌يابي تكه اي خطي , مدل هاي ARIMA-GARCH , بهينه‌سازي سبد سرمايه چند دوره‌اي
استاد داور :
مهديه طهماسبي، ندا اسماعيلي، افشين پرورده
تاريخ ورود اطلاعات :
1400/06/28
كتابنامه :
كتابنامه
رشته تحصيلي :
رياضي كاربردي
دانشكده :
رياضي
تاريخ ويرايش اطلاعات :
1400/06/28
كد ايرانداك :
2728215
چكيده فارسي :
در اين رساله از الگوريتم انتخاب سبد سرمايه چند دو¬ره‌اي براي بيشينه كردن دارايي سرمايه‌گذار بر اساس معيار ريسك احتمالاتي استفاده مي¬شود. براي بهبود مدل بهينه‌سازي سبد سرمايه چند دوره‌اي، علاوه بر توزيع نرمال، از توزيع‌هاي تي، پايدار و برآوردگر هسته نيز استفاده شده است. تست كولموگروف-اسميرنف نشان مي‌دهد كه توزيع‌هاي نام¬برده در مقايسه با توزيع نرمال، براي برازش به سري زماني بازدهي¬ها در اغلب موارد مناسب‌ترند و از بين آن¬ها برآوردگر توزيع هسته بهترين است. علاوه بر اين، با معيارهاي ديگري نيز كارايي توزيع¬هاي فوق مقايسه شدند. نتيجه¬هاي به دست آمده حاكي از آن است كه در مجموع استفاده از برآوردگر توزيع هسته در حل مسئله بهينه¬سازي مورد بحث ارجح است. سپس با فرض¬هاي مناسب جديد، مسئله بهينه‌سازي چند دوره¬اي حل ميشود. به اين صورت كه به¬جاي استفاده تنها از يك توزيع مشخص، براي هر دارايي در هر دوره، بهترين توزيع از بين توزيع‌هاي نرمال، تي، پايدار و برآوردگر هسته به¬كار گرفته ميشود، كه در نتيجه جواب¬هاي دقيق¬تر به¬دست ميآيد. پس از آن، به¬منظور بهينه‌سازي نتايج، از درون‌يابي تكه¬اي خطي توزيع تجربي به جاي توزيع¬هاي پارامتري و برآوردگر هسته براي حل مسئله بهينه¬سازي استفاده ميشود. در پايان اين بحث هم مورد بررسي قرار ميگيرد كه چگونه مي‌توان با استفاده از مدل¬هاي ARIMA- GARCH براي سرمايه‌گذاري‌هاي آتي بر اساس داده‌هاي تاريخي برنامه‌ريزي كرد و نتايج حاصل با آن چه قبلاً به دست آمد با يكديگر مقايسه خواهد شد.
چكيده انگليسي :
In this thesis, we solve the multi-period portfolio optimization to maximize the investorʹs portfolio return using the probabilistic risk measure. To obtain reliable results, in addition to the Gaussian distribution, we employ studentʹs t and stable distributions, as well as kernel distribution estimator. The Kolmogorov-Smirnov test indicates that these non-Gaussian distributions are more suitable for fitting the time series of returns among them, and the kernel distribution estimator is the best. Also, the above distributions are compared in terms of efficiency with some criteria. The results indicate that often applying the kernel distribution estimator, is preferable in solving the optimization problem. Then, instead of choosing the same distribution for all assets in all periods, we use the best distribution among the Gaussian, studentʹs t, stable, and kernel estimator distributions for each asset in each period. Therefore, more accurate results have acceded. After that, to optimize the results, we use piecewise linear interpolation of the empirical distribution instead of parametric distributions and the kernel distribution estimator to solve the optimization problem. Finally, we explain how to use ARIMA-GARCH models to plan for future investments using historical data and then compare the results with what we obtained earlier.
استاد راهنما :
محمد تقي جهانديده، صفيه محمودي
استاد مشاور :
رضا مختاري
استاد داور :
مهديه طهماسبي، ندا اسماعيلي، افشين پرورده
لينک به اين مدرک :

بازگشت