شماره مدرك :
16656
شماره راهنما :
14779
پديد آورنده :
ايراني دوست، علي
عنوان :

بهبود يك رويكرد مبتني بر برنامه‌ريزي خطي عددصحيح براي مسأله‌ي ساخت هاپلوتايپ فردي با بهره‌گيري از صفحات برشي

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
مهندسي كامپيوتر
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان
سال دفاع :
1400
صفحه شمار :
يازده، 97 ص. : مصور، جدول، نمودار
استاد راهنما :
حسين فلسفين
توصيفگر ها :
ﺻﻔﺤﺎﺕ ﺑﺮﺷﻲ , ﺑﺮﻧﺎﻣﻪﺭﻳﺰﻱ ﺧﻄﻲ ﻋﺪﺩﺻﺤﻴﺢ (ILP) , ﺳﺎﺧﺖ ﻫﺎﭘﻠﻮﺗﺎﻳﭗ ﻓﺮﺩﻱ (SIH) , ﻣﺤﻚ ﻛﻤﺘﺮﻳﻦ ﺗﺼﺤﻴﺢ ﺧﻄﺎ (MEC) , ﻣﺴﺎﺋﻞ ­NP-ﺳﺨﺖ
استاد داور :
زينب مالكي، جلال ذهبي
تاريخ ورود اطلاعات :
1400/07/27
كتابنامه :
كتابنامه
رشته تحصيلي :
مهندسي كامپيوتر
دانشكده :
مهندسي برق و كامپيوتر
تاريخ ويرايش اطلاعات :
1400/07/28
كد ايرانداك :
2728671
چكيده فارسي :
ﺍﻧﺴﺎﻥ ﻣﻮﺟﻮﺩﻱ ﺩﻳﭙﻠﻮﺋﻴﺪﻱ ﺍﺳﺖ. ﻛﺮﻭﻣﻮﺯﻭﻡﻫﺎﻱ ﺍﻧﺴﺎﻥ ﺍﺯ ﺩﻭ ﻛﭙﻲ ﺗﺸﻜﻞ ﺷﺪﻩﺍﻧﺪ، ﻳﻜﻲ ﺍﺯ ﻛﭙﻲﻫﺎ ﺍﺯ ﭘﺪﺭ ﻭ ﺩﻳﮕﺮﻱ ﺍﺯ ﻣﺎﺩﺭ ﺑﻪ ﺍﺭﺙ ﻣﻲﺭﺳﻨﺪ. ﻛﺮﻭﻣﻮﺯﻭﻡﻫﺎ ﺩﺭ ﺑﻴﻦ ﺍﻓﺮﺍﺩ، ﺩﺭ ﺑﻴﺸﺘﺮ ﻗﺴﻤﺖﻫﺎﻱ ﻣﺸﺨﺺ ﻣﻘﺎﺩﻳﺮ ﻳﻜﺴﺎﻧﻲ ﺩﺍﺭﻧﺪ. ﺍﺳﻨﻴﭗ، ﺗﻐﻴﻴﺮ ﻳﻚ ﻧﻮﻛﻠﺌﻮﺗﻴﺪ ﺩﺭ ﻳﻚ ﻣﻜﺎﻥ ﻣﺸﺨﺺ ﺍﺯ ﻛﺮﻭﻣﻮﺯﻭﻡ ﺍﺳﺖ. ﺍﺳﻨﻴﭗﻫﺎﻱ ﻫﺮﻛﭙﻲ ﺍﺯ ﻛﺮﻭﻣﻮﺯﻭﻡﻫﺎ، ﺩﺭ ﻛﻨﺎﺭﻫﻢ ﻗﺮﺍﺭ ﺩﺍﺩﻩ ﻣﻲﺷﻮﻧﺪ ﻭ ﻳﻚ ﺭﺷﺘﻪ ﺑﻪ ﻧﺎﻡ ﻫﺎﭘﻠﻮﺗﺎﻳﭗ ﺗﻮﻟﻴﺪ ﻣﻲﻛﻨﻨﺪ. ﻣﺴﺄﻟﻪﻱ ﺳﺎﺧﺖ ﻫﺎﭘﻠﻮﺗﺎﻳﭗ ﻓﺮﺩﻱ، ﻣﺴﺄﻟﻪﺍﻱ ﺍﺳﺖ ﻛﻪ ﺟﻔﺖ ﻫﺎﭘﻠﻮﺗﺎﻳﭗ ﺑﻬﻴﻨﻪ ﻳﻚ ﻓﺮﺩ ﺭﺍ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻣﺎﺗﺮﻳﺲ ﻓﺮﮔﻤﻨﺖﻫﺎ ﺑﺪﺳﺖ ﻣﻲﺁﻭﺭﺩ. ﻫﺎﭘﻠﻮﺗﺎﻳﭗﻫﺎ ﺍﺭﺯﺵ ﺯﻳﺎﺩﻱ ﺩﺭ ﻋﻠﻮﻡ ﺯﻳﺴﺘﻲ ﻭ ﭘﺰﺷﻜﻲ ﺩﺍﺭﻧﺪ. ﺩﺭ ﺣﻀﻮﺭ ﺧﻄﺎﻫﺎ، ﻣﺴﺄﻟﻪﻱ ﺳﺎﺧﺖ ﻫﺎﭘﻠﻮﺗﺎﻳﭗ ﻓﺮﺩﻱ ﻳﻚ ﻣﺴﺄﻟﻪﻱ ­NPﺳﺨﺖ ﺍﺳﺖ. ﺑﻪ ﻫﻤﻴﻦ ﺩﻟﻴﻞ، ﺭﻭﺵﻫﺎﻱ ﺩﻗﻴﻖ ﻭ ﺍﻛﺘﺸﺎﻓﻲ ﺯﻳﺎﺩﻱ ﺑﺮﺍﻱ ﺣﻞ ﺍﻳﻦ ﻣﺴﺄﻟﻪ ﺍﺭﺍﺋﻪ ﺷﺪﻩﺍﻧﺪ. ﺭﻭﺵﻫﺎﻱ ﺍﻛﺘﺸﺎﻓﻲ ﺳﺮﻋﺖ ﺑﺎﻻﻳﻲ ﺩﺍﺭﻧﺪ ﺍﻣّﺎ، ﺗﻀﻤﻴﻨﻲ ﺑﺮﺍﻱ ﺑﻬﻴﻨﻪ ﺑﻮﺩﻥ ﺟﻮﺍﺏ ﻳﺎﻓﺖ ﺷﺪﻩ ﻧﺪﺍﺭﻧﺪ. ﺍﺯ ﻃﺮﻓﻲ، ﺭﻭﺵﻫﺎﻱ ﺩﻗﻴﻖ ﺑﺮﺍﻱ ﺣﻞ ﺍﻳﻦ ﻣﺴﺄﻟﻪ ﻧﻴﺰ ﺍﺭﺯﺵ ﺑﺎﻻﻳﻲ ﺩﺍﺭﻧﺪ. ﺑﻬﺘﺮﻳﻦ ﺭﻭﺵ ﺩﻗﻴﻖ ﻣﻮﺟﻮﺩ ﺑﺮﺍﻱ ﺣﻞ ﻣﺴﺄﻟﻪ ﺳﺎﺧﺖ ﻫﺎﭘﻠﻮﺗﺎﻳﭗ ﻓﺮﺩﻱ ﺑﺮﺍﻱ ﻫﺮ ﺩﻭ ﻧﺴﺨﻪ ﻫﺘﺮﻭﺯﻳﮕﻮﺱ ﻭ ﻋﻤﻮﻣﻲ ﺁﻥ، ﺑﺮ ﻣﺒﻨﺎﻱ ﻣﺪﻝ ﺑﺮﻧﺎﻣﻪﺭﻳﺰﻱ ﺧﻄﻲ ﻋﺪﺩﺻﺤﻴﺢ ﺍﺳﺖ. ﻫﺪﻑ ﻣﺎ ﺩﺭ ﺍﻳﻦ ﭘﮋﻭﻫﺶ، ﺁﻧﺴﺖ ﻛﻪ ﺑﺎ ﺍﻓﺰﻭﺩﻥ ﺻﻔﺤﺎﺕ ﺑﺮﺷﻲ )ﻧﺎﻣﺴﺎﻭﻱﻫﺎﻱ ﻣﻌﺘﺒﺮ( ﻭ ﻛﺎﻫﺶ ﺍﻧﺪﺍﺯﻩﻱ ﻓﻀﺎﻱ ﺷﺪﻧﻲ ﻣﺴﺄﻟﻪ، ﻣﺪﻝﻫﺎﻱ ﺑﺮﻧﺎﻣﻪﺭﻳﺰﻱ ﺧﻄﻲ ﻋﺪﺩﺻﺤﻴﺢ ﻣﻮﺟﻮﺩ ﺑﺮﺍﻱ ﻫﺮ ﺩﻭ ﺣﺎﻟﺖ ﻫﺘﺮﻭﺯﻳﮕﻮﺱ ﻭ ﻋﻤﻮﻣﻲ ﻣﺴﺄﻟﻪ ﺭﺍ ﺑﻬﺒﻮﺩ ﺑﺨﺸﻴﺪﻩ، ﻭ ﺯﻣﺎﻥ ﺣﻞ ﺍﻳﻦ ﻣﺪﻝﻫﺎ ﺭﺍ ﻛﺎﻫﺶ ﺩﻫﻴﻢ. ﺩﺭ ﻧﻬﺎﻳﺖ، ﺑﺎ ﺑﻬﺮﻩﮔﻴﺮﻱ ﺍﺯ ﺩﺍﺩﻩﻫﺎﻱ ﻣﺘﻌﺪﺩ، ﺗﺄﺛﻴﺮ ﺍﺿﺎﻓﻪ ﺷﺪﻥ ﺍﻳﻦ ﺻﻔﺤﺎﺕ ﺑﺮﺷﻲ ﺑﻪ ﻣﺪﻝﻫﺎﻱ ﺑﺮﻧﺎﻣﻪﺭﻳﺰﻱ ﺧﻄﻲ ﻋﺪﺩﺻﺤﻴﺢ ﺭﺍ ﺑﺮﺭﺳﻲ ﻣﻲﻛﻨﻴﻢ.
چكيده انگليسي :
Humans are diploid. Human chromosomes consist of two copies, one inherited from the mother and the other from the father. The difference between two chromosomes of an individual is called Single Nucleotide Poly­ morphism (SNP). SNPs of a chromosome are listed sequentially and the result is called the haplotype. Single Individual Haplotyping (SIH) problem is the problem of obtaining a pair of haplotypes from a given set of SNP fragments. SIH has many applications in genetics and medical studies. It is a well­known fact that, in the presence of errors, SIH is an NP­hard problem. Due to the hardness of the problem, many inexact approaches have been introduced to solve the problem in a reasonable polynomial time, but at the cost of sacrificing the optimality. Still, exact algorithms are of great value. For instance, they can usually be used to eva‎luate the effectiveness of a heuristic algorithm. One of the most promising exact approaches to solve the problem is to reduce it to the Integer Linear Programming (ILP) problem. In this work, the goal is to strengthen the best presently available ILP formulations for the SIH problem, which are due to Etemadi et al. (2018), by adding valid inequalities (cutting planes). This is done for both the all­heterozygous case and the general case of the problem. The proposed valid inequalities can remarkably tighten the LP relaxations of the original models. Consequently, the strengthened models can be solved in significantly shorter times compared to the original models, as demonstrated by the experimental results.
استاد راهنما :
حسين فلسفين
استاد داور :
زينب مالكي، جلال ذهبي
لينک به اين مدرک :

بازگشت