شماره مدرك :
18104
شماره راهنما :
15790
پديد آورنده :
رضايي، مهسا
عنوان :

تقريب هاي مرتبه بالا براي مشتق كپوتو و معادلات انتقال -انتشار كسري-زماني از نوع كپوتو

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
آناليز عددي
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان
سال دفاع :
1401
صفحه شمار :
هشت، [109]ص.
توصيفگر ها :
روش تبديل فوريه 95
استاد داور :
محمود منجگاني، حميدرضا مرزبان
تاريخ ورود اطلاعات :
1401/09/15
كتابنامه :
كتابنامه
رشته تحصيلي :
رياضي
دانشكده :
رياضي
تاريخ ويرايش اطلاعات :
1401/09/15
كد ايرانداك :
2858032
چكيده فارسي :
ر اين پايان نامه به بررسي برخي از روش هاي عددي براي تقريب مشتق كپوتو مرتبه αام، (1, 0 ∈ (α مي پردازيم. سپس به كمك الگوريتم هاي عددي مرتبه بالا براي تقريب مشتق كپوتو، يك طرح تفاضل متناهي براي معادله انتشار-وزش نوع كپوتو را بررسي خواهيم كرد. علاوه بر اين تقريب هاي عددي مرتبه بالا براي مشتق كپوتو با استفاده از درونيابي و گسسته سازي مورد بررسي قرار گرفته و به آناليز پايداري و همگرايي روش ها پرداخته خواهد شد
چكيده انگليسي :
In recent years, fractional calculus has been a fruitful field of research in science and engineering. In fact, many scientific areas are currently paying attention to the fractional calculus concepts, and we can refer to its adoption in viscoelasticity and damping, diffusion and wave propagation, electromagnetism, chaos and fractals, heat transfer, biology, electronics, and signal processing. The concept of fractional calculus can be summarized in the derivative and integral of non-integer order. Fractional differential equations are generalizations of classical differential equations of integer order that have recently proved to be valuable tools for the modeling of many physical phenomena. This topic has been the focus of many studies due to its frequent appearances in various applications, such as physics, biology, finance, fractional dynamics, engineering, signal processing, and control theory. However, because of the nonlocal properties of fractional operators, it is difficult, even impossible to obtain the analytical solutions of fractional differential equations. So, deriving numerical methods for fractional differential equations is one of the core issues in the studies of numerical fractional calculus. Hence, the development of methods is useful and reliable for solving fractional differential equations. Up to now, there exist several numerical methods to approximate Caputo derivatives. Constructing a series of new high-order numerical approximations to αth (0 < α < 1) order Caputo derivative by using rth (r4 is a positive integer) degree interpolation approximation for the integral function refers to some works of Li et al. They apply a high-order finite difference scheme for Caputo-type advection-diffusion equation with Dirichlet boundary conditions by using the derived numerical approximation. Besides, practical numerical stability is also shown for the case r = 4. The other cases (r4 for positive integer r) can be similarly investigated. In this thesis, we aim to investigate some recent works by Li et al. related to high-order approximations for Caputo derivatives and applying new numerical approximations for time-fractional advection-diffusion equations. For this purpose first, some preliminaries which will be used in the sequel are prepared and the introduction of fractional calculus is mentioned. Some important preliminaries are some useful definitions such as Grunwald-Letnikov derivative, Riemann-Liouville derivative, Caputo fractional derivative, and Riesz derivative. Then, numerical methods such as L1, L2, and L2c are represented. After that, by using the Taylor expansion of Lagrange polynomials, high-order approximations for Caputo derivatives are obtained. In the continuation of the text, fractional derivative approximation by a central finite difference scheme is investigated and discussed with initial boundary conditions to check the stability and the amount of local truncation error. Finally, two different examples are solved by considering r = 4, 5 to demonstrate the efficiency of these schemes and confirm the theoretical results. For this purpose, several suitable MATLAB codes are prepared. Numerical results confirm theoretical results and show that the numerical order of convergence in time and space are approximately r + 1 − α and two, respectively
استاد راهنما :
رضا مختاري
استاد داور :
محمود منجگاني، حميدرضا مرزبان
لينک به اين مدرک :

بازگشت