توصيفگر ها :
خوشهبندي چندنمايي , يادگيري ماشين , خوشهبندي مبتني بر گراف , يادگيري عميق , خودرمزگذار , يادگيري عميق , كاهش بعد، خودرمزگذار , يادگيري عميق , كاهش بعد
چكيده فارسي :
خوشهبندي چندنمايي مبتني بر گراف، رويكردي نوين در حوزهي يادگيري ماشين و دادهكاوي است كه با هدف تحليل دادههاي پيچيده و چندمنظوره توسعه يافته است. در اين روش، دادههايي كه از نماهاي مختلف جمعآوري شدهاند بهصورت گرافهايي مدلسازي ميشوند كه در آن رأسها نمايانگر نمونهها و يالها بيانگر شباهتها يا روابط بين آنها هستند. با تركيب اين گرافها، يك نماي كلي و جامع از ساختار دادهها به دست ميآيد كه ميتواند مبناي خوشهبندي دقيقتر باشد. هدف اصلي اين پژوهش، ارائهي روشي نوين براي خوشهبندي چندنمايي است كه با استفاده از يادگيري عميق، فضاي تعبيهي پنهانِ مقاوم و گراف پيونديِ پايدار، دقت و كارايي الگوريتمهاي خوشهبندي را بهبود دهد. براي كاهش تأثير نويز و دادههاي پرت، از تكنيكهاي تعبيه براي نگاشت دادهها به فضاي كمبعد و مقاوم استفاده شده است. همچنين، روشهايي براي تركيب بهينهي گرافهاي شباهت از نماهاي مختلف توسعه داده شده كه موجب افزايش دقت و كاهش پيچيدگي محاسباتي ميشود. رويكرد پيشنهادي قابليت بالايي در تحليل دادههاي چندمنظوره دارد و در كاربردهاي متنوعي نظير تحليل دادههاي زيستپزشكي، شبكههاي اجتماعي و سيستمهاي پيشنهاددهنده قابل استفاده است.
چكيده انگليسي :
Graph-based multi-view clustering addresses the challenge of analyzing data described by multiple, complementary representations. In practical settings, samples are generated from diverse sources or feature sets, each capturing distinct aspects of the underlying structure. For instance, images may be characterized by color, texture, and shape, while social networks reflect connections, demographics, and behavior. Single-view methods often miss these aspects, yielding incomplete or biased clusters. Modeling each view as a graph—with nodes as samples and edges as similarity—preserves local and global relations and enables principled integration. By learning a consensus graph across views, complementary signals can be exploited to reveal intrinsic cluster structure more accurately, providing a robust basis for downstream clustering.
This thesis proposes a method that couples deep representation learning with graph-based modeling to learn a consensus structure across views. Deep autoencoders first produce compact, noise-resistant embeddings that filter irrelevant variation and map data into a low-dimensional latent space. From these embeddings, a similarity graph is constructed per view. A consensus graph is then learned by optimally combining the view-specific graphs so that no single view dominates and complementary information is fully utilized. Clustering performed on the consensus graph yields groups that better reflect the underlying distribution.
The framework targets robustness to noise, missing values, and high dimensionality—conditions common in multi-source data. Latent embeddings mitigate measurement errors and sparsity, while multi-graph integration stabilizes results under challenging settings. Empirically, the approach improves accuracy and reliability compared with conventional single-view or naïve fusion baselines, and it scales to large datasets.
The methodology has broad utility: integrating genomic, clinical, and imaging data for more precise disease subtyping and treatment planning; combining connections, attributes, and activity for clearer community discovery in social networks; and fusing ratings, reviews, and browsing histories for more accurate recommendations.
In summary, the proposed deep, graph-based multi-view clustering framework offers a scalable and effective solution for analyzing heterogeneous data. By jointly addressing noise, outliers, and heterogeneity, it advances the state of the art in multi-view clustering and lays the groundwork for future research that bridges representation learning with graph-based models.