توصيفگر ها :
تشخيص ناهنجاري , طبقه بندي يك كلاسه , چگالي مبتني بر مجاورت , بازسازي منظم شده , محدوديت تنكي , جريمه همواري
چكيده فارسي :
تشخيص ناهنجاري در بسياري از سامانه هاي مهندسي و علمي بر داده هاي يك كلاسه متكي است و در حضور
الگوهاي غيرخطي يا نويز با افت عملكرد مواجه مي شود. در اين پژوهش، روشي با عنوان توصيف چگالي مبتني بر
مجاورت با بازسازي منظم شده (PDDRR (معرفي مي شود كه توزيع كلاس هدف را با تركيب چگالي مجاورت و بازسازي
مقيد مدل مي كند. ابتدا چگالي مجاورت براي داده هاي آموزشي محاسبه و سپس با حل يك مسئله بهينه سازي درجه دو،
ضرايب توصيفي چگالي استخراج مي شود. دو مولفه منظم سازي شامل قيد تنكي و جريمه همواري به ترتيب اثر نويز را
كاهش داده و مرز تصميمي هموار ايجاد مي كنند. چارچوب پيشنهادي با سنجه هاي مختلف مجاورت از جمله هسته RBF،
معكوس فاصله اقليدسي و نرخ هم رخدادي وزن دار سازگار است. براي ارزيابي، مجموعه داده هاي مرجع چندكلاسه به فرم
يك كلاسه تبديل و با معيار AUROC و راهبرد proxy − C بررسي شدند. نتايج نشان مي دهد روش پيشنهادي در مقايسه
با خانواده هاي مبتني بر فاصله، بازسازي، چگالي، بردار پشتيبان و خوشه بندي تركيبي، عملكردي برتر يا رقابتي دارد.
همچنين تحليل حساسيت بيانگر آن است كه استفاده هم زمان از دو مولفه تنكي و همواري، توصيف چگالي پايدارتر و مقاوم تري در برابر بيش برازش فراهم مي كند. .
چكيده انگليسي :
Anomaly detection plays a vital role in various engineering, industrial, and scientific domains where identifying irregular behaviors or faulty samples is crucial for ensuring system reliability. In many real-world cases, only normal
or target-class data are available for training, making one-class classification (OCC) a practical framework. However, conventional OCC methods often suffer from performance degradation under nonlinear patterns, overlapping
distributions, or noise near class boundaries. Moreover, existing distance- or reconstruction-based approaches may
fail to capture the intrinsic density structure of complex data manifolds.
This thesis presents a novel approach called Proximity-based Density Description with Regularized Reconstruction
(PDDRR), which integrates proximity-based density estimation with a reconstruction-driven regularization scheme.
The main idea is to describe the target-class distribution through a set of density coefficients that minimize the reconstruction error of an initial proximity-based density. The method first computes a proximity-based density matrix
using an arbitrary proximity measure—such as inverse Euclidean distance, Radial Basis Function (RBF) kernel, or
weighted co-occurrence rate—and then solves a quadratic optimization problem to obtain refined coefficients. Two
complementary regularizers are applied: a sparsity constraint to suppress noisy effects and enhance interpretability,
and a smoothness penalty to preserve topological consistency and prevent overfitting. The resulting model provides
a unified density descriptor adaptable to diverse proximity measures without assuming any specific data distribution.
Based on the optimized coefficients, weighted proximity densities are computed for unseen samples, where smaller
density values indicate higher anomaly degrees.
The proposed PDDRR method was evaluated on several benchmark datasets converted to one-class form and compared with representative distance-, reconstruction-, density-, support vector-, and clustering-based approaches. Hyperparameters were tuned via the C-proxy criterion and the Area Under the Receiver Operating Characteristic (AUROC) metric. Experimental results show that PDDRR achieves competitive or superior performance across most
datasets, particularly under noisy or nonlinear class structures. A sensitivity analysis further confirms that combining
both sparsity and smoothness regularization yields more stable density descriptions and stronger generalization, while
using either alone results in less consistent performance.
In conclusion, PDDRR offers a robust and flexible framework for one-class anomaly detection by combining the descriptive power of proximity-based density modeling with the regularizing strength of reconstruction-based learning.
Its adaptability to various proximity measures and robustness to noisy, nonlinear data make it a promising tool for
practical anomaly detection and novelty discovery in high-dimensional domains.