توصيفگر ها :
شبكه عصبي پيچشي , حافظه بلندمدت - كوتاه مدت , تحليل تكنيكي , پيش بيني قيمت طلا , شاخص هاي اقتصادي , يادگيري عميق
چكيده فارسي :
براي (LSTM) و حافظه بلندمدت - كوتاه مدت (CNN) در اين پژوهش، يك مدل تركيبي از شبكه هاي عصبي پيچشي
پيش بيني جهت حركت قيمت طلا ارائه شده است. هدف اين تحقيق، بهره گيري از توانايي شبكه هاي عصبي در شناسايي
الگوهاي پنهان در داده هاي بازار مالي و به كارگيري آن براي تصميم گيري دقيق تر در معاملات مالي است. براي اين منظور،
از داده هاي تحليل فني در كنار برخي شاخص هاي اقتصادي كلان مانند قيمت نفت خام، نرخ برابري دلار به ين ژاپن،
شاخص بازار سهام آمريكا، شاخص ارزش دلار آمريكا و قيمت ارزهاي ديجيتال استفاده شده است.
پساز جمع آوري و پيش پردازشداده ها، مدل طراحي و آموزش داده شده و عملكرد آن با استفاده از معيارهايي مانند خطاي
ميانگين ارزيابي شده است. نتايج نشان مي دهد كه مدل پيشنهادي قادر است بادقت مناسبي، جهت تغييرات قيمت طلا
را پيش بيني كند و مي تواند در تصميم گيري هاي مرتبط با سرمايه گذاري مورد استفاده قرار گيرد.
چكيده انگليسي :
The global metals market, particularly the gold market, plays a critical role in ensuring the overall stability and performance
of international financial systems. Due to its well-established position as a safe-haven asset, gold is widely
regarded by investors as a strategic hedge against periods of economic uncertainty, elevated inflation levels, geopolitical
tensions, and fluctuations in global currency valuations. However, the price of gold is inherently volatile and
affected by a diverse range of macroeconomic variables, including supply-demand dynamics, inflation expectations,
interest rate adjustments, currency index movements, and global equity and commodity market behavior. Consequently,
predicting trends in gold price movements remains a highly challenging and strategically significant topic
within financial analysis, investment planning, and risk management.
Traditional econometric approaches, such as autoregressive moving average (ARMA) and generalized autoregressive
conditional heteroskedasticity (GARCH) models, have been widely used to model the statistical properties of gold
price time series. Nevertheless, these models often struggle to effectively capture nonlinear dependencies, highdimensional
interactions, and long-memory characteristics inherent in real-world financial markets. To overcome
these limitations, recent studies have increasingly turned to deep learning methodologies, particularly recurrent neural
networks such as Long Short-Term Memory (LSTM) structures and Convolutional Neural Networks (CNN), due to
their superior capacity to extract hidden, complex patterns from sequential financial data.
In this research, a hybrid deep learning architecture based on the integration of CNN and LSTM (CNN–LSTM)
networks is proposed to predict short-term directional movements in gold prices. The CNN layer is utilized to extract
spatial and structural features from historical pricing and technical indicator data, while the LSTM layer captures
temporal dependencies and long-term behavioral trends present in the underlying financial series. Furthermore, the
model incorporates several influential macroeconomic and financial market indicators, such as the U.S. Dollar Index
(DXY), West Texas Intermediate (WTI) crude oil prices, the S&P 500 index, the USD/JPY exchange rate, and the
price of Bitcoin, each of which has been empirically demonstrated to contribute to volatility patterns in the gold
market.
The dataset for this study was collected from reliable international financial databases and underwent a series of
preprocessing steps, including normalization, resampling, and feature-scaling operations, before being partitioned into
training and testing subsets. Model training was conducted using backpropagation through time, with mean squared
error (MSE) employed as the primary loss function and adaptive learning-rate optimization techniques applied to
enhance convergence stability and computational efficiency.