پديد آورنده :
روشن جوي، ميثم
عنوان :
يك روش شمارش ضمني با ترتيب الفبايي براي مسائل برنامه ريزي شمار غير خطي به منظور بيشينه سازي تايع هدف با محدوديتهاي به فرم كوچكتر يا مساوي
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
سيستمهاي اقتصادي و اجتماعي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده صنايع و سيستم ها
صفحه شمار :
دوازده، 113، [II]ص.: مصور، جدول، نمودار
استاد راهنما :
محمد سعيد صباغ
توصيفگر ها :
الگوريتم شاخه و كران ، صفحه - برشي , كوله پشتي كراندار ، بي كران , سيستم هاي سوي موازي , روش لالروبل
استاد داور :
نادر شتاب بوشهري
تاريخ ورود اطلاعات :
1396/02/24
رشته تحصيلي :
صنايع و سيستم ها
دانشكده :
مهندسي صنايع و سيستم ها
چكيده فارسي :
به فارسي و انگليسي : قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Abstract A partial enumeration algorithm for nonlinear integer programming NIP problemsthat may be considered as an extension of the 1966 algorithm of Lawler and Bell ispresented here Lawler Bell and Sabbagh consider problems with minimizationobjective functions and constraints in the form of g i x bi but the proposed algorithmdeals with problems with maximization objective function and constraints in the form of g i x bi Then the basic algorithm is extended to use the linearity properties of linearconstraints to accelerate the search for global optimum The method is easy to understandand implement yet very effective in dealing with very small NIP problems includingreliability optimization and spare allocation problems The algorithm is based onmonotonicity properties of the problem functions and uses function values only it doesnot require continuity or differentiability of the problem functions This allows its use onproblems whose functions cannot be expressed in closed algebric form In the next step the above method is used for developing a heuristic and fastalgorithm to obtain a good lower bound for large scale knapsack problems with a singleequality constraint Finally to illustrate the efficiency of our heuristic algorithm thisapproach is applied to solve the knapsack problems in De Loera et al s paper in 2005 Numerical examples show that the algorithm can generate good solutions near to theoptimum often the optimum in a short computational time
استاد راهنما :
محمد سعيد صباغ
استاد داور :
نادر شتاب بوشهري