شماره مدرك :
4226
شماره راهنما :
3997
پديد آورنده :
فراهت، حامد
عنوان :

بررسي پايداري و پايدار سازي سيستم هاي فازي بر پايه تابع لياپائوف مشتق ناپذير

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
كنترل
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان، دانشكده برق و كامپيوتر
سال دفاع :
1387
صفحه شمار :
نه، 103، [II] ص. : نمودار
يادداشت :
ص. ع. به : فارسي و انگليسي
استاد راهنما :
فريد شيخ الاسلام، يداله ذاكري
توصيفگر ها :
سيستم هاي فازي تاكاگي - سوگنو , سيستم هاي فازي ممداني
تاريخ نمايه سازي :
2/7/1387
استاد داور :
سعيد حسين نيا، جواد عسگري
دانشكده :
مهندسي برق و كامپيوتر
كد ايرانداك :
ID3997
چكيده فارسي :
به فارسي و انگليسي : قابل رويت در نسخه ديجيتال
چكيده انگليسي :
AbstractTakagi Sugeno fuzzy systems have attracted attentions as proper models for locallinearization of nonlinear systems and approximating the behavior of such systemswith a kind of interpolation using membership functions Because of quasi linearstructure stability analysis and stabilization of these systems have been based onLyapunov function candidates which were presented for linear systems previously One of the most common Lyapunov functions for this purpose is quadraticLyapunov function which leads to find a common symmetric positive definite matrixbetween all subsystem matrices After more than a decade this method and relatedalgorithms for stabilization based on this function has proven very fruitful Alsoseveral methods have been proposed to solve some classic control problems such asoptimal and robust control Nevertheless lack of a transparent relation betweenstructure of sub matrices and stability of fuzzy systems not proven globalperformance and increased dimensions of matrices used in designing fuzzy controllerswith Linear Matrix Inequality algorithm in the presence of uncertain terms andaddition of new rules motivate the researchers to find new approaches and solve theseproblems In this thesis we have analyzed stability and proposed a new stabilization approach forcontinuous time T S fuzzy systems using a non derivative Lyapunov function Wehave proven that this Lyapunov function implies that the diagonal dominancy of sub system matrices is a sufficient condition for global asymptotic stability of these fuzzysystems Also we have used a static feedback controller for stabilization algorithm Ifsub system matrices had uncertain terms in their arrays our approach has the ability tostabilize the system and places the eigenvalues in a region which leads to a goodbehavior of states Also this method can be applied to design fuzzy controllers and usethe benefits of such systems
استاد راهنما :
فريد شيخ الاسلام، يداله ذاكري
استاد داور :
سعيد حسين نيا، جواد عسگري
لينک به اين مدرک :

بازگشت