پديد آورنده :
اميني آبچويه ، محسن
عنوان :
مطالعه عددي اثر جايگزيدگي در گرافين و قطعات نانومتري گرافين
مقطع تحصيلي :
كارشناسي ارشد
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده فيزيك
صفحه شمار :
يازده ،87، [II] ص: جدول ، نمودار
يادداشت :
ص.ع. به: فارسي و انگليسي
استاد راهنما :
اكبر جعفري
استاد مشاور :
فرهاد شهبازي
توصيفگر ها :
گيبس , فرميون هاي ديراك , بسط چبيشف , الگوريتم لنكژوس
تاريخ نمايه سازي :
88/4/31
استاد مدعو :
كيوان آقابابايي ساماني
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتال
چكيده انگليسي :
AbstractIn this thesis we investigate the effect of disorder in Graphene andnano meter size Graphene samples We start by introducing adiscrimintation parameter DP to discriminate localized versusextended states Then we introduce a stochastic method based onthe expansion in terms of a complete set of polynomials known askernel polynomial method KPM which is suitable for evaluatingof DP and many other spectral functions The intrinsic Gibbsoscillation in this method can be damped with a suitable regularization of KPM known as RKPM Removing the Gibbsoscillation gives stable results in Graphene which is free of finitesize errors Our calculation using RKPM indicates persense of amobility edge in strongly disordered Graphene which is in contrastto predictions of the scaling theory of localization Since themobility edge in our calculation atrats at fermi level and is pushedto the band edges by increasing the disorder strength our findingssuggests that Graphene can be rendered semiconductor byintroducing strong enough disorder Keywords Graphene disorder localization Anderson model scaling quantum percolation Chebyshev expansion
استاد راهنما :
اكبر جعفري
استاد مشاور :
فرهاد شهبازي