شماره مدرك :
4578
شماره راهنما :
4306
پديد آورنده :
روستا ، مرجان
عنوان :

بررسي پتانسيل نفت زايي در زون ساختاري قم - اردستان در محيط GIS

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
اكتشاف معدن
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان ، دانشكده مهندسي معدن
سال دفاع :
1387
صفحه شمار :
سيزده ، 107 ، [II] ص: مصور ، نمودار ، جدول ، نقشه
يادداشت :
ص. ع. به: فارسي و انگليسي
استاد راهنما :
نادر فتحيان پور ، مرتضي طبايي
استاد مشاور :
هوشنگ اسدي هاروني
توصيفگر ها :
ايران مركزي , اوزان شاهد , همپوشاني شاخص , شبكه عصبي - فازي
تاريخ نمايه سازي :
88/5/4
استاد داور :
محمد رضا كمالي ، حسن طباطبايي
دانشكده :
مهندسي معدن
كد ايرانداك :
ID4306
چكيده فارسي :
به فارسي و انگليسي : قابل رويت در نسخه ديجيتال
چكيده انگليسي :
Evaluating oil forming potential of Qom Ardestan structural zone in GIS environment Marjan Roosta Marjanroosta2002@gmail com 25 Feb 2009 Department of Mining Engineering Isfahan University of Technology Isfahan 84156 83111 Iran Degree M Sc Language FarsiSupervisor Nader Fathianpour E mail Fathian@cc iut ac ir Abstract Due to the inherent uncertainties associated with most geologically related estimations and inferences therewould always exist some sort of estimation errors if we employ definite logical approaches like Boolean ones One of the recent models used in many scientific fields for making judgments and inferences of phenomena withassociated uncertainties is the fuzzy logic Fuzzy logic is considered as a knowledge based method as comparedwith data driven methods such as neural network or weight of evidence The Qum Ardestan region is part of central Iran structural zone which contains may embrace considerableamount of hydrocarbon resources This hypothesis could be assessed through evaluating geological and organicgeochemical evidences The geological evidences prepared for current study include the mapping of anticlinestructures acting as hydrocarbon traps the fault as the main passages of hydrocarbon migration the totalthickness of Qum formation plus the thickness of its C3 member which is assumed to be capable of being themain reservoir rock The inorganic maturity level and geochemistry evidences were extracted through using the3D geothermal solid model The total number of evidential layers prepared for the final potential mappinganalysis was nine which were then classified into 3 main categories named geochemical geological andstructural factors The evidential layers were then combined using four different approaches including index overlaying weight ofevidence fuzzy and neural network algorithms A number of 22 training points were used in all four methodsfollowed by the generation of the final integrated favorability maps Results from all models were highlyconsistent and could locate all hydrocarbon bearing wells inside the high potential areas An analysis of differentmethods performances showed significant similarities for the areas embracing oil bearing wells The areas withhigh favorabilities obtained from weight of evidence fuzzy and index overlay methods show less variances whereas those of the neural network method bears more variance and to some extent different results Finally itis concluded that the results obtained through Fuzzy approach is generally more consistent with the geologicalsettings of the studied area and is suggested as the best approach for mapping the favorability of hydrocarbonpotential in a GIS environment Key word hydrocarbon potential central iran weight of evidence fuzzy neural network index overlaying
استاد راهنما :
نادر فتحيان پور ، مرتضي طبايي
استاد مشاور :
هوشنگ اسدي هاروني
استاد داور :
محمد رضا كمالي ، حسن طباطبايي
لينک به اين مدرک :

بازگشت