شماره مدرك :
4941
شماره راهنما :
4645
پديد آورنده :
دادخواه، حسين
عنوان :

طراحي مسير بهينه و كنترل فرآيند جابجايي يك جسم توسط دو بازوي همكار صفحه اي

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
طراحي كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده مكانيك
سال دفاع :
1388
صفحه شمار :
هفده،167ص: جدول ، نمودار
يادداشت :
ص.ع. به: فارسي و انگليسي
استاد راهنما :
مهدي كشميري
استاد مشاور :
سعيد بهبهاني
توصيفگر ها :
ربات همكار , بهينه سازي ديناميكي , بهينه سازي پارامتري , الگوريتم ژنتيك
تاريخ نمايه سازي :
27/10/88
استاد داور :
مصطفي غيور،فتاح
تاريخ ورود اطلاعات :
1396/09/25
كتابنامه :
كتابنامه
دانشكده :
مهندسي مكانيك
كد ايرانداك :
ID4645
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتال
چكيده انگليسي :
۱۶۸ Planning and Implementation of Optimal Trasferring of an Object by Two Planar Cooperative Manipulators Hossein Dadkhah adadkhah@cc iut ac ir 7th Oct 2009 Department of mechanical engineering Isfahan University of Technology Isfahan 84156 83111 IranDegre M Sc Language FarsiMehdi Keshmiri mehdik@cc iut ac irABSTRACTWhile cooperation among robots enhances the capabilities of the robotic systems and their applications itimposes kinematic dynamic and control complications on them due to the closed chains created In thisstudy the kinematic dynamic and control aspects of a set of planar cooperative manipulators are initiallyinvestigated to be followed by a study of the optimal path planning using different optimization indexes forthe two independent phases of approaching to and transferring an object by manipulators The geometrical constraints of the mechanism will be used to extract its kinematic equations by relating workspace and joint space variables for each of the two system movement phases in two algebraic and differential or position and velocity forms The mechanism s dynamic equations for the approaching phase will bederived using the Recursive Newton Euler and the Langrage methods while the method of LagrangeApproach for Constrained Systems will be employed to derive those for the transferring phase Incontinuation the problem of controlling the cooperating manipulators will be investigated In thedecentralized technique both manipulators are controlled independently from each other while in thecentralized technique all the manipulators are considered as one single system for which only one controlleris designed to control the whole system Finally various methods of robotic control are introduced to designtwo controllers based on computed torque and fuzzy methods and the problem of locating the mechanism onthe desired path by these two controllers is investigated The main objective of the present study is optimal path planning As already said above the problem isinvestigated for the two phases of a set of cooperating manipulator approaching to and transferring an object in both the joint and work spaces of the robot respectively In the approaching phase optimization is basedon the three indexes time to minimize the time that the manipulator approaches the object kinematics tominimize the squared second norm of the joint velocity along the trajectory and dynamics to minimizemanipulators energy consumption In the transferring phase the kinematic and dynamic indexes are alsooptimized to achieve an optimized trajectory The dynamic optimization problem is reformulated as a parametric or static optimization problem usingapproximation equations and two different methods of physical discretization mathematical discretization Inthe mathematical discritization two approaches are implemented using simple polynomials of the timefunction and mathematical discretization using a linear combination of a finite number of shifted Legendrepolynomials These equations are then solved using GA Three sets of kinematic dynamic and geometricalconstraints are effected as penalty functions on the system and it is found that the mathematical discretizationusing a linear combination of a finite number of shifted Legendre polynomials leads to obtaining the globaloptimum point for the three indexes considered due to its extensive search limit Keywords Cooperative Manipulator Optimal Trajectory Planning Dynamic Optimization GA
استاد راهنما :
مهدي كشميري
استاد مشاور :
سعيد بهبهاني
استاد داور :
مصطفي غيور،فتاح
لينک به اين مدرک :

بازگشت