شماره مدرك :
5111
شماره راهنما :
4801
پديد آورنده :
عبادي، عباس
عنوان :

ارائه ي مدل رياضي و روش مبتني بر گراف براي حل بهينه ي مسائل زمان بندي با انقطاع در محيط هاي كارگاهي

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
صنايع
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان،دانشكده صنايع و سيستم ها
سال دفاع :
1388
صفحه شمار :
[نه]،132ص.:مصور،جدول،نمودار
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
قاسم مصلحي
استاد مشاور :
علي شاهنده
توصيفگر ها :
مساله ي توليد كارگاهي , مساله ي كارگاه جريان , MIBP , گراف فصلي , روش شاخه كران , مسائل شناخته شده
تاريخ نمايه سازي :
89/1/23
استاد داور :
نادر شتاب بوشهري
دانشكده :
مهندسي صنايع و سيستم ها
كد ايرانداك :
ID4801
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
133 Development of New Mathematical Models and A Graph Based Method to Optimally Solve Preemptive Shop Scheduling Problems Abbas Ebadi a ebadi@in iut ac ir Department of Industrial Engineering Isfahan University of Technology Isfahan 84156 83111 Iran Degree M Sc Language Farsi Ghasem Moslehi moslehi@cc iut ac ir Supervisor Abstract Scheduling has a thorough influence on the efficiency of shop systems Furthermore one of the most important assumptions in scheduling is preemption which can improve the value of objective function Hence in this study preemptive shop scheduling problems have been considered and two exact methods have been developed to minimize makespan The first method is based on mathematical models In order to present this method at first some specific characteristics of the preemptive job shop scheduling problem pJSSP are proven Then a new MIBP model is presented The dimensions of new model despite available models depend only on the number of jobs and machines and the processing times have no effect on it This model is used in an exact two phase approach In addition different preemptive flow shop problems as special cases of pJSSP are studied and the new mathematical model is specifically developed for them Comparing new model with the best available model shows the higher efficiency of new model both theoretically and computationally The second exact method is based on a disjunctive graph In order to present this method at first a new disjunctive graph is designed for demonstrating pJSSP Then according to this graph an exact branch and bound algorithm is presented and some lower bounds dominance rules and other techniques are used to improve its efficiency Finally this method is used to solve the famous benchmark problems and its results are compared with the best available results Comparisons show that the presented method is much stronger than available methods in that it has been able to achieve the optimal answer of 25 open benchmark problems and solve problems with the size of 30 10 and 50 10 for the first time Keywords preemption assumption job shop and flow shop scheduling problems mathematical model MIBP disjunctive graph branch and bound algorithm benchmark problems
استاد راهنما :
قاسم مصلحي
استاد مشاور :
علي شاهنده
استاد داور :
نادر شتاب بوشهري
لينک به اين مدرک :

بازگشت