شماره مدرك :
5459
شماره راهنما :
5119
پديد آورنده :
رضي پرچيكلائي، غزال
عنوان :

مدلسازي فرايند OCM با استفاده از شبكه عصبي مصنوعي و بهينه سازي پارامترهاي عملياتي فرايند با الگوريتم ژنتيك

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
مهندسي شيمي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده مهندسي شيمي
سال دفاع :
1389
صفحه شمار :
سيزده،89ص.: مصور،جدول،نمودار
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
محمدرضا احساني
استاد مشاور :
سعيد زرين پاشنه
توصيفگر ها :
زوج شدن اكسايش متان , Mn/Na2Wo4/Sio2
تاريخ نمايه سازي :
13/7/89
استاد داور :
ارجمند مهرباني، مسعود حق شناس
دانشكده :
مهندسي شيمي
كد ايرانداك :
ID5119
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Modeling of Oxidative Coupling of Methane using Artificial Neural Network and Optimization of Operational Conditions using Genetic Algorithm Ghazal Razi Perchikolaei gh razi@ce iut ac ir May 24 2010 Department of Chemical Engineering Isfahan University of Technology Isfahan 84156 83111 Iran Degree M sc Language Farsi M R Ehsani ehsanimr@cc iut ac ir S Zarrinpashne zarrinpashnes@ripi ir Abstract In this thesis the effect of operating conditions such as temperature gas hourly space velocity GHSV CH4 O2 ratio and diluents gas mol on ethylene production by oxidative coupling of methane OCM in a fixed bed reactor at atmospheric pressure was studied over Mn Na2WO4 SiO2 catalyst 0 5gr of catalyst was loaded in a quartz reactor Based on the properties of neural networks an artificial neural network was used for model development from experimental data In order to prevent network complexity and effective data input to network principal component analysis method was used and the number of output parameters were reduced from 4 to 2 A feed forward back propagation network was used for simulating the relations between process operating conditions the above mentioned parameters and aspects of catalytic performance which include conversion of methane C2 products selectivity yield of C2 and C2H4 C2H6 ratio Levenberg Marquardt method is presented to train the network For first output optimum network with 1 9 4 topology one hidden layer which includes 9 neurons and for second output optimum network with 1 6 4 topology one hidden layer including 6 neurons was prepared After the simulation process using ANNs operating conditions were optimized using Genetic Algorithm based on maximum yield of C2 The optimum conditions were obtained as reaction temperature 850 C GHSV 22464 cm3g 1h 1 diluents gas 30 mol and CH4 O2 ratio 4 33 03 of methane conversion 71 07 of C2 product selectivity 23 47 of C2 yield and 2 073 of C2H4 C2H6 ratio were obtained under these optimum conditions Experimental runs under optimum conditions were done at Research Institute of Petroleum Industry RIPI and the results obtained were compared with the simulated values obtained from the model The average error from comparing experimental and simulated values for methane conversion C2 products selectivity yield of C2 and C2H4 C2H6 ratio was estimated as 2 73 10 66 5 48 and 10 28 respectively Keywords Oxidative Coupling of Methane OCM Mn Na2WO4 SiO2 catalyst ANNs Optimization Genetic algorithm
استاد راهنما :
محمدرضا احساني
استاد مشاور :
سعيد زرين پاشنه
استاد داور :
ارجمند مهرباني، مسعود حق شناس
لينک به اين مدرک :

بازگشت