شماره مدرك :
5557
شماره راهنما :
331 دكتري
پديد آورنده :
مسيبي برزي، فرشيد
عنوان :

حل مسائل مكانيك جامدات در محيط هاي محدود و نامحدود با استفاده از روش هاي نيمه تحليلي و اجزاء محدود

مقطع تحصيلي :
دكتري
گرايش تحصيلي :
سازه
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده عمران
سال دفاع :
1389
صفحه شمار :
سيزده،153ص.: مصور،جدول،نمودار
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
بيژن برومند
استاد مشاور :
محمد مهدي سعادت پور، مجتبي محزون
توصيفگر ها :
حل عددي , معادلات ديفرانسيل پاره اي , ضرائب ثابت و متناوب , روش هاي نيمه تحليلي و گسسته , روش هاي بدون شبكه و شبكه ثابت
تاريخ نمايه سازي :
13/9/89
استاد داور :
سهيل مجدي، حميد هاشم الحسيني، مجتبي ازهري
دانشكده :
مهندسي عمران
كد ايرانداك :
ID331 دكتري
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Solution of Solid Mechanics Problems in Bounded and Unbounded Domains Using Semi Analytic and Finite Element Methods Farshid Mossaiby Barzy mossaiby@cv iut ac ir July 18 2010 Department of Civil Engineering Isfahan University of Technology Isfahan 84156 83111 IranB Boroomand boromand@cc iut ac irM M Saadatpour M Mahzoon A Kabiri AbstractGrowing demand for simulation of scientific and engineering problems requires faster andmore accurate numerical solution of partial differential equations PDEs In this research a new approach is proposed from a new point of view for the solution of such PDEs Theapproach is based on using a linear combination of bases which satisfy the differentialequation The coefficients of these bases are calculated using a method developed by theauthor such that the boundary conditions are satisfied in a point wise manner Thisapproach may be used in the solution of linear PDEs enabling solution of a class ofproblems not easily attainable with conventional methods Various forms of the proposed approach have been developed to solve different types ofproblems In each form semi analytic version using continuous functions and discreteversion using a numerical method like the Finite Element Method FEM has beenstudied Also the usage of these forms in problems on domains with homogeneous andperiodic material properties is addressed To this end first a direct form of the proposedapproach has been developed for problems defined on bounded domains The numericalexamples show that the direct form can be used to solve this class of problems effectively In the next step by applying the radiation condition the direct form has been extended toevaluate numerical Green s functions The Green s functions can be effectively used tosolve problems on unbounded domains Numerical examples show that the accuracy of theresults is comparable with those of the conventional boundary integral methods Toalleviate difficulties arising near singular points a local meshless form of the proposedapproach has been developed Numerical experiences show that despite simple formulationand computer implementation the latter form of the proposed approach is capable ofsolving high frequency wave problems Very high convergence rate is seen in the results ofthe local meshless method Finally the solution of initial value problems using theproposed approach has been addressed in this work Key WordsNumerical solution Partial Differential Equations Constant and Periodic Coefficients Department of Civil Engineering Isfahan University of Technology supervisor Department of Civil Engineering Isfahan University of Technology advisor Department of Mechanical Engineering Shiraz University advisor Department Graduate Program Coordinator
استاد راهنما :
بيژن برومند
استاد مشاور :
محمد مهدي سعادت پور، مجتبي محزون
استاد داور :
سهيل مجدي، حميد هاشم الحسيني، مجتبي ازهري
لينک به اين مدرک :

بازگشت