شماره مدرك :
6607
شماره راهنما :
6158
پديد آورنده :
سيفي، مهدي
عنوان :

رويكردي براي حل مسائل برنامه ريزي سه سطحي خطي

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
سيستم هاي اقتصادي و اجتماعي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده صنايع و سيستم ها
سال دفاع :
1390
صفحه شمار :
نه، 66ص.: مصور، جدول
يادداشت :
ص.ع. به فارسي و انگليسي
استاد راهنما :
رضا حجازي
استاد مشاور :
ناصر ملاوردي اصفهاني
توصيفگر ها :
نظريه بازي ها , بازي استكل برگ
تاريخ نمايه سازي :
30/1/91
استاد داور :
فريماه مخاطب رفيعي، نادر شتاب بوشهري
تاريخ ورود اطلاعات :
1396/10/12
كتابنامه :
كتابنامه
رشته تحصيلي :
صنايع و سيستم ها
دانشكده :
مهندسي صنايع و سيستم ها
كد ايرانداك :
ID6158
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
An Approach for Solving Linear Tri Level Programming Problems Mehdi Seifi m safy@in iut ac ir Date of Submission 2011 07 18 Department of Industrial and Systems Engineering Isfahan University of Technology Isfahan 84156 83111 Iran Degree M Sc Language Farsi Supervisor S Reza Hejazi rehejazi@cc iut ac irAbstractNowadays game theory is one of the most important fields in mathematics and optimization problems Someimportant cases that could be pointed in the scope of game theory are internal and external policies of government inface of nation and other societies technological development strategy economic relationships war and powertoward benefits improvement The simplest state of game theory is occurred when all players are aware about theother s goals and resource amount One of the famous examples in game theory is Stackelberg s games that firsttime begins in economy In Stackelberg s games there are two competitors that the amount of production by onecan effect the amount of production by other This game has four strategies first producer is leader and secondproducer is follower or reverse and or both producers coincident are leaders or followers When producers areleaders or followers game haven t an equilibrium point so hasn t a solution But when one of them is leader andother is follower game have an equilibrium point so has a solution Multi level problems are extended based onStackelberg problem that decision maker of high levels is leaders for decision maker at the low levels A simplemulti level problem is a two player game called bi level problem that the former player will receive a response fromthe latter player for determination of itself controlled variable Feasible space and objective function for the bothplayers are fixed and visible A considerable question is that how much amount of controlled variable should bedetermined by the former player in order to obtain the maximum benefit A tri level problem is a bi level problemthat second level is a bi level problem It is proofed that a complexity of bi level problem is NP hard and induciblespace of a bi level problem is not necessary convex but it s continues and set of extreme points of inducible space issubset of set of extreme points of feasible space Because of continues inducible space of a bi level problem thereare a way on inducible space for every extreme points of inducible space to at least one extreme points of feasiblespace However there is a difficulty for solving the tri level problem so that set of extreme points in inducible spaceare not necessarily a subset of set of extreme points of feasible space and inducible space at a tri level problemagainst inducible space of bi level problem is not necessary continues and there are not necessary way in induciblespace of every extreme points of inducible space to at least one of extreme points of feasible space This state isoccurred when for a fixed and determined amount of first level s variable the follower bi level problem has anoptimal multiple solutions In this dissertation the stated subject has been investigated to extract the multiplesolutions of follower bi level problem The outcome of this survey is a method that generates these multiple points Also this method is illustrated by two examples Keywords Game Theory Stackelberg s Game Linear Tri level Programming
استاد راهنما :
رضا حجازي
استاد مشاور :
ناصر ملاوردي اصفهاني
استاد داور :
فريماه مخاطب رفيعي، نادر شتاب بوشهري
لينک به اين مدرک :

بازگشت