شماره مدرك :
7112
شماره راهنما :
6639
پديد آورنده :
فرهمندي، شهلا
عنوان :

رنگ آميزي سيستم هاي اشتاينري

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي﴿تركيبيات﴾
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
سال دفاع :
1390
صفحه شمار :
[هشت]، 74ص.: مصور، جدول
يادداشت :
ص.ع. به فارسي و انگليسي
استاد راهنما :
غلامرضا اميدي
استاد مشاور :
بهناز عمومي
توصيفگر ها :
عددرنگي
تاريخ نمايه سازي :
29/7/91
استاد داور :
جواد باقريان، قهرمان طاهريان
تاريخ ورود اطلاعات :
1396/09/20
كتابنامه :
كتابنامه
رشته تحصيلي :
علوم رياضي
دانشكده :
رياضي
كد ايرانداك :
ID6639
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
On The Coloring of Steiner systems SHAHLA FARAHMANDI s farahmandi@math iut ac ir January 4 2012 Master of Science Thesis Department of Mathematical Science Isfahan University of Technology Isfahan 84156 83111 IranSupervisors Dr Gholamreza Omidi romidi@ cc iut ac ir 2000 MSC 68P30Key word Design Steiner system Coloring Chromatic number AbstractIn this thesis we consider colorings of steiner systems and in which blockshave prescribed color patterns The main question studied is given an integer does there exista coloring of given type using at least exactly or at most colors For several types ofcolorings a complete answer to this question is obtained While for other types partial resultsare presented We also discuss the question of the existence of uncolorable systems There arethree possible coloring patterns in which a triple can be colored type monochromatic type bichromatic and type polychromatic Let and In a coloring of type of a steiner triple system we assign to each point a color from a given set ofcolors So that all of these colors are used and the color pattern of each block is in It is obviousthat there exist seven possible types of colorings of steiner triple systems The coloring of types are trivial In this thesis we consider colorings of types strict coloring bicoloring and weak coloring for steinertriple systems and we give most of the obtained results on these types of coloring For Charles J Colbourn and Jeffry H Dinitz gave necessary conditions for the existence of abicoloring with three color classes and gave a multiplication theorem for steiner triple systemswith three color classes They also examined bicolorings with more than three color classes Theupper chromatic number of a steiner triple system is a maximum number of colors that can beassigned to the elements of the underlying set in such a way that each block contains amonochromatic pair of elements In fact upper chromatic number is the maximum number ofcolors that used for any coloring of type for steiner triple systems Lorenzo Milazzo
استاد راهنما :
غلامرضا اميدي
استاد مشاور :
بهناز عمومي
استاد داور :
جواد باقريان، قهرمان طاهريان
لينک به اين مدرک :

بازگشت