پديد آورنده :
كاوياني، هادي
عنوان :
هندسه ي خوددوگان و پاخوددوگان پاددوسيته ي 3 بعدي
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
ذرات بنيادي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده فيزيك
صفحه شمار :
هشت،65ص.: مصور،جدول،نمودار
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
فرهنگ لران اصفهاني
استاد مشاور :
منصور حقيقت
توصيفگر ها :
متريك غير قطري رويه هاي پاددوسيته
تاريخ نمايه سازي :
6/8/91
استاد داور :
بهروز ميرزا، مهدي دهقاني
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Self dual and anti self dual geometry of AdS3 Hadi Kavyani Email hadigm@gmail com Date of Submission 2012 3 5 Department of Physics Isfahan University of Technology Isfahan 84156 83111 Iran Degree M Sc Language FarsiSupervisor F Loran loran@cc iut ac irAbstractThe Anti de Sitter solution is one precise solution of Einstein s equations in empty space One can consider AdS spaces with several dimensions but what important for us is anAdS space with two spatial dimensions plus one of time AdS3Reviewing some of previous works about geometry of AdS3 spaces we generalize anotation that is very similar to Dirac notation and present the coordinates of the ambientspacetime SO 2 2 in a ket Then we introduce the Killing vectors of AdS3 in spacetimeSO 2 2 and peresent one of several classifications of Killing vectors called self dual andanti self dual Killing vectors Using our notation generalizing one of reviewed works andapplying Killing vector s condition for one coordinate of the locally AdS3 coordinatesystem we prove that The Killing vectors of an AdS3 could not be both self dual anti self dual and The relationship between coordinates of the ambient space and the locallyAdS3 coordinate r is only through a ket such that it s norm is equal to square root of AdSradius under the condition of Anti de Sitter Next we obtain a general metric for the AdS3 spaces with two Killing vector the matrixof this metric have six non zero component Then we dissect conditions for diagonalizingthe metric and show that this conditions are not permanent and there are some exampleswith non zero and components Last we introduce a new example with non zero components and obtain it smetric and list the singularity points Therefore writing the Lagrangy for the example smetric we compute the constants of motion and obtain the lightlike geodesies inthis geometry is a singularity and we checking if the lightlike geodesies visit it in slightsof proper observer and infinity observer Additionally we debate about switching thenature of coordinate r when the lightlike geodesies meet some other singularity points Keywords Self dual geometry Anti self dual geometry three dimensional Anti de Sitter
استاد راهنما :
فرهنگ لران اصفهاني
استاد مشاور :
منصور حقيقت
استاد داور :
بهروز ميرزا، مهدي دهقاني