شماره مدرك :
7778
شماره راهنما :
7243
پديد آورنده :
هاشمي، هادي
عنوان :

حل مسائل مهندسي دو بعدي وابسته به زمان با استفاده از توابع پايه نمايي

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
سازه
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده عمران
سال دفاع :
1391
صفحه شمار :
ده،114ص.: مصور،جدول،نمودار
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
بيژن برومند
استاد مشاور :
مجتبي ازهري
توصيفگر ها :
معادلات ديفرانسيل مقدار اوليه مقدار مرزي , انتقال حرارت , الاستوديناميك , محيط هاي متخلخل اشباع , تئوري بيوت
تاريخ نمايه سازي :
20/3/92
استاد داور :
محمود فرزين، فرهاد بهنام فر
دانشكده :
مهندسي عمران
كد ايرانداك :
ID7243
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Solution of 2D time dependent engineering problems with exponential basis functions EBFs Seyed Hadi Hashemi hadiha2012@yahoo com 22January 2013 Department of Civil Engineering Isfahan University of Technology Isfahan 84156 83111 Iran Degree M Sc Language Farsi Supervisor Prof Bijan Boroomand boromand@cc iut ac ir Abstract Obviously all physical phenomena are time dependent For engineering design it is necessary to predict the results of such phenomena by solving the mathematical models The development of highly accurate and efficient solvers for time dependent problems remains as an important and challenging research topic in computational physics even though there are many numerical methods available for solving time dependent partial differential equations PDEs This thesis is an effort to use exponential basis functions EBFs for solving 2D time dependent PDEs directly The PDEs are assumed to be of constant coefficient type The main feature of the presented method is that the solution of the PDE is expressed as a function in space and time without using the routine schemes such as Laplace transformatin or finite difference method To this end the semi analytical solution of the PDE is expressed as a series of EBFs The constant coefficients of the solution series are determined form the initial boundary conditions In this thesis the initial and boundary conditions are satisfied at the same time in a collocation scheme by the use of a discrete transformation technique To solve problems in a long period of time a time marching method is used In this method the problems are solved in a sequence of time intervals This is performed by choosing a small time interval and repeating the procedure in a step by step manner while using the information obtained at the end of each time interval as the initial values for the next step To show the robustness of the proposed method a verity of problems such as heat conduction wave propagation in membrane elastodynamic and poroelastodynamic problems are solved It has been shown that the proposed method is capable of solving various initial boundary value problems efficiently Key Words Initial boundary value problems exponential basis functions heat conduction wave propagation in membrane elastodynamic porous media Biot s theory meshless method
استاد راهنما :
بيژن برومند
استاد مشاور :
مجتبي ازهري
استاد داور :
محمود فرزين، فرهاد بهنام فر
لينک به اين مدرک :

بازگشت