شماره مدرك :
7993
شماره راهنما :
7428
پديد آورنده :
نوري سده، زهرا
عنوان :

تخمين فركانس و ضريب ميرايي سيگنال هاي سينوسي ميرا با استفاده از شبكه هاي آدالاين

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
كنترل
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده برق و كامپيوتر
سال دفاع :
1391
صفحه شمار :
نه،84ص.: نمودار
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
محسن مجيري فروشاني، مريم ذكري
استاد مشاور :
بهرام كريمي
توصيفگر ها :
مختلط , شبكه هاي عصبي آدالاين , الگوريتم LMS نرماليزه , باند پايين كرامر-رو
تاريخ نمايه سازي :
9/7/92
استاد داور :
جعفر قيصري، مرضيه كمالي
دانشكده :
مهندسي برق و كامپيوتر
كد ايرانداك :
ID7428
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Estimation of Frequency and Damping Factor of Exponentially Damped Sinusoidal Signals Using Adaline Network Zahra Nouri Sedeh z nouri@ec iut ac ir Department of Electrical and Computer Engineering Isfahan University of Technology Isfahan 84156 83111 Iran Degree M Sc Language Farsi Supervisors Dr Mohsen Mojiri mohsen mojiri@cc iut ac ir Dr Maryam Zekri mzekri@cc iut ac ir Abstract Online processing of signals has particular importance in control systems Because these signals have information about system and its performance Therefore the accurate description of features of system is possible by extracting the information of signals Many researches have done on predictable signals in recent years One group of these signals is exponentially damped sinusoidal EDS signals The EDS signals have many practical applications such as speech audio analysis linear system identification and transient analysis The parameters estimation of the EDS signals consists of the amplitude frequency damping factor and phase of the signal Various methods have been proposed to estimate the parameters of an EDS signal Some of well known approaches include matrix pencil method maximum likelihood method and linear prediction methods These methods are not suitable for tracking time varying parameters Therefore researches have been focused on applying on line estimators such as Adaline neural networks to track time varying frequency and damping factor In this thesis two algorithms based on the Adaline networks are presented for online estimation of the frequency and damping factor of a complex EDS signal In both algorithms the unknown parameters of signal put in the weight coefficients of the Adaline networks The normalized variable step size LMS algorithm is used for training the weights Furthermore the proposed methods are extended for a complex biased EDS signal In this way frequency damping factor real and imaginary parts of the signal are estimated In following the convergence analysis of both the proposed algorithms is presented The parameters estimation of a signal corrupted with white gaussian noise is of importance in signal processing Therefore it is important to compare the performance of the algorithms with a criterion called Cramer Rao lower bound CRLB In following the CRLB is attained for the complex EDS signal corrupted with a complex white Gaussian noise The performance of the proposed algorithms is compared with this bound Various simulations show the desirable performance of the proposed algorithms at different situations At the end the performance of the proposed Adaline networks is compared together Simulation results confirm the better performance of the first Adaline in estimating of the parameters of the complex biased EDS signal Key Words Complex exponentially damped sinusoidal signal Frequency Damping factor Adaline network Normalized LMS algorithm Cramer Rao lower bound CRLB PDF created with pdfFactory trial version www pdffactory com
استاد راهنما :
محسن مجيري فروشاني، مريم ذكري
استاد مشاور :
بهرام كريمي
استاد داور :
جعفر قيصري، مرضيه كمالي
لينک به اين مدرک :

بازگشت