پديد آورنده :
خدائي، سميه
عنوان :
رفتار تقريبي دم توزيع هاي ايستا در صف هاي نوع GI/G/1
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
آمار اقتصادي-اجتماعي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
صفحه شمار :
ده،111ص.: مصور،جدول،نمودار﴿رنگي﴾
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
صفيه محمودي
توصيفگر ها :
حالت ها و وضعيت هاي فازي نامتناهي , نرخ نزول , فرآيند جمعي ماركف , تجزيه ي وينر- هوف , فرآيند دوگان
تاريخ نمايه سازي :
11/8/62
استاد داور :
افشين پرورده، علي رجالي
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
The Stationary Tail Asymptotics in the GI G 1 Type Queue Somayeh Khodaei s khodaei@math iut ac ir December 11 2012 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Sa eh Mahmoodi mahmoodi@cc iut ac ir Advisor Dr Mehdi Mahdavi m mahdavi@cc iut ac ir 2010 MSC 60K25 60K15 Keywords GI G 1 type queue in nite background states decay rate stationary distribution Markov additive process Wiener Hopf factorization dual process priority queue AbstractThis thesis is based on a work has been done by Zhao Q Yiqiang and Miyazawa Masakiyo 2004 Two dimensional Markov process Xn Yn n 0 which will be considered is a GI G 1 typequeue The rst component of this process is referred to level and the second component is called thephase The majore question is following this fact that in general nding closed form for stationarydistribution of ergodic multidimensional Markov processes when the phase state space is in nite isnot easy and even in some cases It is impossible For nitely many backgrand states this model wasintroduced In this thesis combining the Markov renevwal approach with the sensoring representation of the sta tionary distribution and Winner Hopf factorization for a Markov additive process As a next step thetail of stationary distribution of Markov processes and their asymptotic behavior have been investi gated Our goal in this thesis is that under assumption that the chain has stationary distribution weinvestigate the asymptotic behavior of the stationary tail probabilities in the discrete time GI G 1type queue with a countable phase state space that This result generalizes the corresponding resultfor the M G 1 type queue in Miyazawa 27 These probabilities are presented in a matrix form withrespect to the phase state space and will be shown that it is solution of a Markov renewal equation Using this fact we consider their decay rates Historically decay rate problems in queues have beenwidely studied in literature because of their importance In particular the large deviation technique
استاد راهنما :
صفيه محمودي
استاد داور :
افشين پرورده، علي رجالي