عنوان :
كرانداري و توسيع تك نقطه اي
مقطع تحصيلي :
كارشناسي ارشد
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
محمدرضا كوشش
تاريخ نمايه سازي :
11/8/92
استاد داور :
محمدتقي جهانديده، مهدي نعمتي
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Boundedness And One point Extension Somayeh Ashjea ashjea@math iut ac ir 2012 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Mohammad Reza Koushesh koushesh@cc iut ac ir Advisor Dr Majid Gazor mgazor@cc iut ac ir 2010 MSC 54D35 54D10 54D20 Keywords boundedness one point extension Abstract Let X be a topological space A topological space Y is called an extension of X if Y contain Xas a dense subspace An extension Y of X is called a one point extension if Y X is a single point One point extension has been rst introduced by P Alexandro in 1924 when he showed that everylocally compact non compact Hausdor space X has a one point compact extension called the one point compacti cation of X or the Alexandro compacti cation of X The Alexandro constructionof the one point compacti cation has been further generalized by various authors in various directions In particular there has been lots of interest in the problem of whether a space having a topologicalproperty locally has a one point extension having the topological property globally Here we discusssuch generalizations through the introduction of the notion of boundedness More precisely we havethe following Let X be a topological space A family FX of subset of X is called a boundedness in X if itsatis es the following conditions 1 Every subset of an element of FX is an element of FX 2 Every nite union of element of FX is an element of FX Suppose that FX is a boundedness in X Let Y X p where p X and de ne OY OX p X F F clX F FX
استاد راهنما :
محمدرضا كوشش
استاد داور :
محمدتقي جهانديده، مهدي نعمتي