شماره مدرك :
8274
شماره راهنما :
7672
پديد آورنده :
اوشال، ميثم
عنوان :

خمينه هاي لورنتسي همگن از يك گروه نيم ساده

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده رياضي
سال دفاع :
1392
صفحه شمار :
نه، 83ص: مصور، جدول، نمودار
يادداشت :
ص.ع:به فارسي و انگليسي
استاد راهنما :
منصور آقاسي
استاد مشاور :
اعظم اعتماد دهكردي
توصيفگر ها :
متر لورنتسي , متر ناوردا
تاريخ نمايه سازي :
25/09/1392
استاد داور :
اسدالله رضوي، قهرمان طاهريان
دانشكده :
رياضي
كد ايرانداك :
ID7672
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتال
چكيده انگليسي :
Homogeneous Lorentzian manifolds of a semisimple group Meysam Oshall m oshall@math iut ac ir 19 09 2012 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr M Aghasi m aghasi@cc iut ac ir Advisor Dr A Etemad Dehkordy ae110mat @cc iut ac ir 2010 MSC 53C75 22E46 Keywords Invariant metrics Lorentzian metrics Homogeneous manifolds AbstractA homogeneous manifold is a manifold together with a transitive action of a Lie group G on M Transitivity means that for any x y M there exists g G such that gx y In other words G hasonly one orbit on M A homogeneous manifold M may be identi ed with the coset space G K whereK g G go g is the stabilizer or stability subgroup of a point o M By a homogeneous manifold M G H we will understand the homogeneous manifold of a connectedLie group G modulo a closed connected subgroup H We identify the tangent space ToM at the pointo eH with the coset space V g h where g Lie G is the Lie algebra of G and h Lie H is thesubalgebra associated with the subgroup H We denote by j H GL V resp j h gl V theisotropy representation of the stability subgroup H resp the stability subalgebra h It is inducedby the adjoint representation of H resp h Since the group H is connected a tensor T in V isj H invariant if and only if it is j h invariant that is j h T 0 for all h h We describe the structure of d dimensional homogeneous Lorentzian G manifolds of the form M G H of a semisimple Lie group G Due to a result by N Kowalsky it is su cient to consider the casewhen the group G acts properly that is the stabilizer H is compact Then any homogeneous space with a smaller group H H admits an invariant Lorentzian metric A homogeneous manifold G HG H with a connected compact stabilizer H is called a minimal admissible manifold if it admits an Ginvariant Lorentzian metric but no homogeneous G manifold with a larger connected compact H
استاد راهنما :
منصور آقاسي
استاد مشاور :
اعظم اعتماد دهكردي
استاد داور :
اسدالله رضوي، قهرمان طاهريان
لينک به اين مدرک :

بازگشت