شماره مدرك :
8284
شماره راهنما :
7682
پديد آورنده :
شهرياري، مصطفي
عنوان :

يك روش بي نياز از شبكه براي مسايل همرفت - پخش

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي كاربردي﴿آناليز عددي﴾
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده رياضي
سال دفاع :
1392
صفحه شمار :
هشت، 98ص: جدول، نمودار
يادداشت :
ص.ع:به فارسي و انگليسي
استاد راهنما :
مهدي تاتاري
استاد مشاور :
رضا مختاري
توصيفگر ها :
روش ذره اي بر اساس هسته ي بازيافتي , مسايل لايه مرزي , مساله ي كشسان يكنواخت
تاريخ نمايه سازي :
25/09/1392
استاد داور :
داود ميرزايي، حميد رضا ظهوري زنگنه
دانشكده :
رياضي
كد ايرانداك :
ID7682
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتال
چكيده انگليسي :
A meshfree reproducing kernel based method for convection di usion equation Mostafa Shahriari m shahriyari@math iut ac ir 2013 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Mehdi Tatari mtatari@cc iut ac ir Advisor Dr Reza Mokhtari rmokhtari@cc iut ac ir 2013 MSC 65 M 99 Keywords Reproducing kernel based method Meshfree method Particle method convection di usion MHD Isotrapic Elasticity Elliptic equations bondary layer problems AbstractThe traditional Mesh based methods for solving Partial Di erential Equations are based on meshgeneration that is complicated and time consuming process especially for complex geometries Inlast decades meshless methods are introduced for solving the problems that are arisen from meshdependency Particle methods are one of the most familiar of these methods SPH method was aprelude to these methods that was introduced by Lucky and Gingold and Monaghan in 1977 Therewere some problems in this method First and foremost of these problem is that this method isinaccurate near the boundary of domain In 1996 Han introduced Reproducing Kernel Particlemethods RKPM that smooth out most of SPH problems In recent years RKPM has appealedto the masses The main motive behind this prosperity is that this method is truly meshless and iseasy to implement Other reason for its popularity is accuracy at the points which locate near andon boundary The outstanding features of RKP shape functions have compelled Scienti cs to usethese shape functions in other methods and create new methods Flexibility of RKPM in using strongform or weak form of Partial Di erential Equations is one the reasons that have made this method a
استاد راهنما :
مهدي تاتاري
استاد مشاور :
رضا مختاري
استاد داور :
داود ميرزايي، حميد رضا ظهوري زنگنه
لينک به اين مدرک :

بازگشت