پديد آورنده :
قوامي نياكي، ميلاد
عنوان :
پاسخ مسايل كنترل بهينه خطي تاخيري با استفاده از يك روش هم مكاني مركب مبتني بر چند جمله اي هاي چبيشف
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
علوم رياضي -رياضي كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
صفحه شمار :
نه،94ص.: نمودار
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
حميدرضا مرزبان
توصيفگر ها :
تاخير , توابع تركيبي , نقاط چبيشف-گوس-لوباتو , هم مكاني تركيبي چبيشف
تاريخ نمايه سازي :
21/10/93
استاد داور :
جواد عسگري، فريد بهرامي
چكيده انگليسي :
Solution of linear optimal control problems with time delay using a composite Chebyshev nite di erece method Milad Ghavami Niyaki milad ghavami@math iut ac ir 2014 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Hamid Reza Marzban hmarzban@cc iut ac ir 2010 MSC 34K35 93C05 49N05 Keywords optimal control delay hybrid function Chebyshev Gauss Lobatto points compositeChebyshev nite di erence Abstract Time delay systems have received much attention in the past few decades because time delays arefrequently encountered in many practical systems and various elds of engineering and science suchas aerospace engineering robotics physics communication networks chemical processes transporta tion systems transmission lines bilogical models population growth economics and nance climatemodels and power systems The presence of delay makes analysis and control design much more com plicated Therefore time delay systems are very important to many investigators for their control stability and optimization The application of Pontryagin s maximum principle to the optimization ofcontrol systems with time delays as outlined by Kharatishvili results in a system of coupled two pointboundary value problem involving both delayed and advanced terms whose exact solution exceptin highly special cases is very di cult Therefore the main object of all computational aspects ofoptimal time delay systems has been to devise a methodology to avoid the solution of the mentionedtwo point boundary value problem Orthogonal functions have been extensively used to solve variousproblems of dynamic systems The essential idea of this technique is that it reduces these problemsto those of solving a system of algebraic equations thus greatly simplifying the problem Signalsfrequently have mixed features of continuity and jumps These signals are continuous over certainsegments of time with discontinuities or jump occurring at the transitions of the segments In such
استاد راهنما :
حميدرضا مرزبان
استاد داور :
جواد عسگري، فريد بهرامي