عنوان :
كنترل بهينه ي سيستم هاي غير خطي با تاخير چند گانه با استفاده از توابع تركيبي چبيشف - بلاك پالس
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
حميدرضا مرزبان
استاد مشاور :
فريد بهرامي
توصيفگر ها :
نقاط چبيشف -گاوس-لوباتو , چند جمله اي هاي چبيشف
تاريخ نمايه سازي :
11/12/93
استاد داور :
محمود منجگاني، فريد شيخ الاسلام
چكيده انگليسي :
Optimal control of nonlinear multi delay systems using a hybrid of block pulse functions and Chebyshev polynomials Maryam Moezzi m moezzi@math iut ac ir 2014 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Hamid Reza Marzban hmarzban@cc iut ac ir Advisor Dr Farid Bahrami fbahrami@cc iut ac ir 2010 MSC 05C15 53C42 Keywords optimal control delay hybrid function Chebyshev Gauss Lobatto points Chebyshevpolynomials AbstractTime delays are frequently occurred in various elds of science and engineering such as communi cation networks chemical processes transmission lines biological systems population growth andpower systems Up to now many research works have been devoted to the theoretical aspects and thenumerical treatments of time delay systems Optimal control of time delay systems is one of the mostchallenging mathematical problems in control theory It is well known that except for simple cases it is either extremely di cult or impossible to obtain a closed form solution for the above mentionedproblems So far several computational techniques have been employed to obtain an approximate so lution for delayed optimal control problems Most of the existing well established numerical algorithmscan e ciently solve optimal control problems whose solutions are in nitely smooth or well behaved Owing to the inherent behavior of time delay systems the analytical solutions of these systems aredi erent functions over the distinct subintervals In such situations neither the continuous basisfunctions CBFs including Chebyshev polynomials nor piecewise constant basis functions PCBFs such as block pulse functions taken alone would form an e cient basis in the representation of piece wise smooth functions The Chebyshev polynomials have been successfully used for solving variousproblems whose solutions are in nitely smooth and well behaved An extremely important property
استاد راهنما :
حميدرضا مرزبان
استاد مشاور :
فريد بهرامي
استاد داور :
محمود منجگاني، فريد شيخ الاسلام