پديد آورنده :
كاوياني، فاطمه
عنوان :
بعد همديس عمل گرهاي اوليه در نظريه ميدان همديس دو -بعدي
مقطع تحصيلي :
كارشناسي ارشد
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده فيزيك
صفحه شمار :
ح، 79ص.: مصور
يادداشت :
ص.ع. به فارسي و انگليسي
استاد راهنما :
فرهنگ لران
استاد مشاور :
احمد شيرزاد
توصيفگر ها :
نظريه ميدان همديس , جبر ويراسورو , ميدان هاي فرميوني
تاريخ نمايه سازي :
94/2/13
استاد داور :
منصور حقيقت، مسلم زارعي
تاريخ ورود اطلاعات :
1396/09/26
چكيده انگليسي :
abstractConformal Field Theory CFT is a Quantum Field Theory which is invariant under conformal trans formations In this thesis we study the upper bound on the scaling dimensions of the lowest primaryoperator other than the identity in a CFT2 We first review the conformal field theory in two dimensions by introducing primary fields theoperator product expansion stress energy tensor and the central charge We review the virasoro al gebra as the symmetry algebra of this theory We then discussing the unitary representations of theVirasoro algebra We study Conformal field theory on a torus focusing on the modular invariance of the partitionfunction for free fermions Using modular invariance of the partition function in the saddle pointapproximation We obtain the asymptotic behavior of the density of states in high energies The following we consider CFT2 with the central charge greater than one which do not have anychiral algebra beyond the Virasoro algebra Using modular invariance of the partition function at themedium temperature we obtain a constraint on a partition function This constraint helps us to derivean upper bound on the conformal dimensions of the primary fields We review different approachesto determining the upper bound on the scaling dimension of the lowest primary field other than theidentity and we see that the leading term of the upper bound is equal to the one twelfth of the centralcharge Keywords Conformal Field Theory Virasoro algebra Fermionic fields
استاد راهنما :
فرهنگ لران
استاد مشاور :
احمد شيرزاد
استاد داور :
منصور حقيقت، مسلم زارعي