پديد آورنده :
مستاجران گورتاني، حميدرضا
عنوان :
مطالعه رهيافت هاي نيل به هاميلتوني نسبيت عام
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
ذرات بنيادي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده فيزيك
يادداشت :
ص.ع. به فارسي و انگليسي
استاد راهنما :
احمد شيرزاد
استاد مشاور :
بهروز ميرزا
توصيفگر ها :
هاميلتوني لاگرانژي داراي مشتق مرتبه دوم زماني , فرمول بندي ADM , لاگرانژي و هاميلتوني نسبيت عام (GR) , روش پالاتيني , روش T-T , روش چندپايه ها
تاريخ نمايه سازي :
94/2/9
استاد ممتحن :
داخلي: غلامرضا خسروي
تاريخ ورود اطلاعات :
1396/09/26
چكيده انگليسي :
Study the approaches of achieve to Hamiltonian of the General Relativity Hamid Reza Mostajeran Gortani hr mostajeran@ph iut ac ir 01 5 2015 Department of Physics Isfahan University of Technology Isfahan 84156 83111 Iran Degree M Sc Language FarsiSupervisor Dr Ahmad Shirzad shirzad@ipm irAbstractThe dynamics of the metric tensor as the fundumental field describing gravity is one of the mostimportant problems of physics This can be achieved in the Lagrangian as well as Hamiltonian for malism In the Hamiltonian approach however one encounters some difficulties due to accelerationterms in the Lagrangian and boundry terms as well There are a few method to solve the problem of higher derivatives i e grater than one in the La grangian of the general relativity among which the Gamma gamma formulation the Palatini formu lation and the vierbine formulation are studied in this thesis Since some velocities are absent in the Lagrangian the theory is a constrained theory The con straint structure of a model can be studied in the framework of Dirac approach or Symplectic approach Faddeev Jackiw approach In this thesis we study the Hamiltonian dynamics of the General relativ ity in both approaches One of the most useful formulations of General relativity is the ADM approach We review this ap proach in full details and construct the constraint structure of the theory in this framework Some authors claim that the ADM formulation is not acceptable since the ADM variables are notcanonical We have criticized this claim and show that the ADM formulation is self consistent Keywords Constraint structure Symplectic method Hamiltonian formulation of second order Lagrangians ADM formulation Palatini
استاد راهنما :
احمد شيرزاد
استاد مشاور :
بهروز ميرزا