Year :
2017
Page :
1-15
Source :
Computer Speech&Language
Format Published :
PDF
Descriptors - جزئيات :
Abstract :
Weproposeamulti-stylelearning(multi-styletrainingCdeeplearning)procedurethatreliesondeepdenoisingautoencoders(DAEs)toextractandorganizethe mostdiscriminativeinformationinatraining database.Traditionally,multi-styletrainingpro-ceduresrequire eithercollectingorartificiallycreatingdatasamples (e.g.,bynoiseinjectionordatacombination)andtrainingadeepneuralnetwork (DNN)withallofthesedifferentconditions.Toexpandtheapplicabilityofdeeplearning, thepresentstudyinsteadadoptsaDAEtoaugmenttheoriginaltrainingset.First, aDAEisutilizedtosynthesizedatathatcapturesusefulstructureintheinputdistribution.Next, thissyntheticdataiscombinedandmixedwithintheoriginaltrainingsetto exploitthepowerfulcapabilitiesofDNNclassifierstolearnthe complexdecisionboundariesinheterogeneousconditions. ByassigningaDAEtosyn-thesizeadditionalexamplesofrepresentativevariations ,multi-stylelearningmakesclassboundarieslesssensitivetocorruptionsbyenforcingback -endDNNstoemphasizeonthemostdiscriminativepatterns.Moreover ,thisdeeplearningtechniquemitigatesthecostandtimeofdata collectionandiseasytoincorporateintotheinternetofthings (IoT).Resultsshowedthesedata-mixedDNNsprovidedconsistentperformanceimprovements withoutevenrequiringanypreprocessingonthetestsets.
Call. No. :
EA 49
IndexDate :
1397/10/15
Indexer :
Dashagha
Title of Article :

Multi-style learning with denoising auto encodersforacoustic modeling in the internet of things(IoT)

RecordNumber :
50
Author/Authors :
PaytonLin , Dau-ChengLyu , Fei Chen , Syu-Siang Wang , Yu Tsao
Author/Authors - جزئيات :
Link To Document :

بازگشت